This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ordtype . (Contributed by Mario Carneiro, 25-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ordtypelem.1 | ⊢ 𝐹 = recs ( 𝐺 ) | |
| ordtypelem.2 | ⊢ 𝐶 = { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } | ||
| ordtypelem.3 | ⊢ 𝐺 = ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑅 𝑣 ) ) | ||
| ordtypelem.5 | ⊢ 𝑇 = { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑥 ) 𝑧 𝑅 𝑡 } | ||
| ordtypelem.6 | ⊢ 𝑂 = OrdIso ( 𝑅 , 𝐴 ) | ||
| ordtypelem.7 | ⊢ ( 𝜑 → 𝑅 We 𝐴 ) | ||
| ordtypelem.8 | ⊢ ( 𝜑 → 𝑅 Se 𝐴 ) | ||
| Assertion | ordtypelem5 | ⊢ ( 𝜑 → ( Ord dom 𝑂 ∧ 𝑂 : dom 𝑂 ⟶ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtypelem.1 | ⊢ 𝐹 = recs ( 𝐺 ) | |
| 2 | ordtypelem.2 | ⊢ 𝐶 = { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } | |
| 3 | ordtypelem.3 | ⊢ 𝐺 = ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑅 𝑣 ) ) | |
| 4 | ordtypelem.5 | ⊢ 𝑇 = { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑥 ) 𝑧 𝑅 𝑡 } | |
| 5 | ordtypelem.6 | ⊢ 𝑂 = OrdIso ( 𝑅 , 𝐴 ) | |
| 6 | ordtypelem.7 | ⊢ ( 𝜑 → 𝑅 We 𝐴 ) | |
| 7 | ordtypelem.8 | ⊢ ( 𝜑 → 𝑅 Se 𝐴 ) | |
| 8 | 1 2 3 4 5 6 7 | ordtypelem2 | ⊢ ( 𝜑 → Ord 𝑇 ) |
| 9 | 1 | tfr1a | ⊢ ( Fun 𝐹 ∧ Lim dom 𝐹 ) |
| 10 | 9 | simpri | ⊢ Lim dom 𝐹 |
| 11 | limord | ⊢ ( Lim dom 𝐹 → Ord dom 𝐹 ) | |
| 12 | 10 11 | ax-mp | ⊢ Ord dom 𝐹 |
| 13 | ordin | ⊢ ( ( Ord 𝑇 ∧ Ord dom 𝐹 ) → Ord ( 𝑇 ∩ dom 𝐹 ) ) | |
| 14 | 8 12 13 | sylancl | ⊢ ( 𝜑 → Ord ( 𝑇 ∩ dom 𝐹 ) ) |
| 15 | 1 2 3 4 5 6 7 | ordtypelem4 | ⊢ ( 𝜑 → 𝑂 : ( 𝑇 ∩ dom 𝐹 ) ⟶ 𝐴 ) |
| 16 | 15 | fdmd | ⊢ ( 𝜑 → dom 𝑂 = ( 𝑇 ∩ dom 𝐹 ) ) |
| 17 | ordeq | ⊢ ( dom 𝑂 = ( 𝑇 ∩ dom 𝐹 ) → ( Ord dom 𝑂 ↔ Ord ( 𝑇 ∩ dom 𝐹 ) ) ) | |
| 18 | 16 17 | syl | ⊢ ( 𝜑 → ( Ord dom 𝑂 ↔ Ord ( 𝑇 ∩ dom 𝐹 ) ) ) |
| 19 | 14 18 | mpbird | ⊢ ( 𝜑 → Ord dom 𝑂 ) |
| 20 | 15 | ffdmd | ⊢ ( 𝜑 → 𝑂 : dom 𝑂 ⟶ 𝐴 ) |
| 21 | 19 20 | jca | ⊢ ( 𝜑 → ( Ord dom 𝑂 ∧ 𝑂 : dom 𝑂 ⟶ 𝐴 ) ) |