This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A trichotomy law for ordinals. (Contributed by NM, 25-Nov-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordtri2 | |- ( ( Ord A /\ Ord B ) -> ( A e. B <-> -. ( A = B \/ B e. A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordsseleq | |- ( ( Ord B /\ Ord A ) -> ( B C_ A <-> ( B e. A \/ B = A ) ) ) |
|
| 2 | eqcom | |- ( B = A <-> A = B ) |
|
| 3 | 2 | orbi2i | |- ( ( B e. A \/ B = A ) <-> ( B e. A \/ A = B ) ) |
| 4 | orcom | |- ( ( B e. A \/ A = B ) <-> ( A = B \/ B e. A ) ) |
|
| 5 | 3 4 | bitri | |- ( ( B e. A \/ B = A ) <-> ( A = B \/ B e. A ) ) |
| 6 | 1 5 | bitrdi | |- ( ( Ord B /\ Ord A ) -> ( B C_ A <-> ( A = B \/ B e. A ) ) ) |
| 7 | ordtri1 | |- ( ( Ord B /\ Ord A ) -> ( B C_ A <-> -. A e. B ) ) |
|
| 8 | 6 7 | bitr3d | |- ( ( Ord B /\ Ord A ) -> ( ( A = B \/ B e. A ) <-> -. A e. B ) ) |
| 9 | 8 | ancoms | |- ( ( Ord A /\ Ord B ) -> ( ( A = B \/ B e. A ) <-> -. A e. B ) ) |
| 10 | 9 | con2bid | |- ( ( Ord A /\ Ord B ) -> ( A e. B <-> -. ( A = B \/ B e. A ) ) ) |