This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The order topology of a total order is Hausdorff. (Contributed by Mario Carneiro, 13-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordthaus | ⊢ ( 𝑅 ∈ TosetRel → ( ordTop ‘ 𝑅 ) ∈ Haus ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ dom 𝑅 = dom 𝑅 | |
| 2 | 1 | ordthauslem | ⊢ ( ( 𝑅 ∈ TosetRel ∧ 𝑥 ∈ dom 𝑅 ∧ 𝑦 ∈ dom 𝑅 ) → ( 𝑥 𝑅 𝑦 → ( 𝑥 ≠ 𝑦 → ∃ 𝑚 ∈ ( ordTop ‘ 𝑅 ) ∃ 𝑛 ∈ ( ordTop ‘ 𝑅 ) ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) ) |
| 3 | 1 | ordthauslem | ⊢ ( ( 𝑅 ∈ TosetRel ∧ 𝑦 ∈ dom 𝑅 ∧ 𝑥 ∈ dom 𝑅 ) → ( 𝑦 𝑅 𝑥 → ( 𝑦 ≠ 𝑥 → ∃ 𝑛 ∈ ( ordTop ‘ 𝑅 ) ∃ 𝑚 ∈ ( ordTop ‘ 𝑅 ) ( 𝑦 ∈ 𝑛 ∧ 𝑥 ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) ) ) |
| 4 | necom | ⊢ ( 𝑦 ≠ 𝑥 ↔ 𝑥 ≠ 𝑦 ) | |
| 5 | 3ancoma | ⊢ ( ( 𝑦 ∈ 𝑛 ∧ 𝑥 ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ↔ ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) | |
| 6 | incom | ⊢ ( 𝑛 ∩ 𝑚 ) = ( 𝑚 ∩ 𝑛 ) | |
| 7 | 6 | eqeq1i | ⊢ ( ( 𝑛 ∩ 𝑚 ) = ∅ ↔ ( 𝑚 ∩ 𝑛 ) = ∅ ) |
| 8 | 7 | 3anbi3i | ⊢ ( ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ↔ ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) |
| 9 | 5 8 | bitri | ⊢ ( ( 𝑦 ∈ 𝑛 ∧ 𝑥 ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ↔ ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) |
| 10 | 9 | 2rexbii | ⊢ ( ∃ 𝑛 ∈ ( ordTop ‘ 𝑅 ) ∃ 𝑚 ∈ ( ordTop ‘ 𝑅 ) ( 𝑦 ∈ 𝑛 ∧ 𝑥 ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ↔ ∃ 𝑛 ∈ ( ordTop ‘ 𝑅 ) ∃ 𝑚 ∈ ( ordTop ‘ 𝑅 ) ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) |
| 11 | rexcom | ⊢ ( ∃ 𝑛 ∈ ( ordTop ‘ 𝑅 ) ∃ 𝑚 ∈ ( ordTop ‘ 𝑅 ) ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ↔ ∃ 𝑚 ∈ ( ordTop ‘ 𝑅 ) ∃ 𝑛 ∈ ( ordTop ‘ 𝑅 ) ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) | |
| 12 | 10 11 | bitri | ⊢ ( ∃ 𝑛 ∈ ( ordTop ‘ 𝑅 ) ∃ 𝑚 ∈ ( ordTop ‘ 𝑅 ) ( 𝑦 ∈ 𝑛 ∧ 𝑥 ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ↔ ∃ 𝑚 ∈ ( ordTop ‘ 𝑅 ) ∃ 𝑛 ∈ ( ordTop ‘ 𝑅 ) ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) |
| 13 | 4 12 | imbi12i | ⊢ ( ( 𝑦 ≠ 𝑥 → ∃ 𝑛 ∈ ( ordTop ‘ 𝑅 ) ∃ 𝑚 ∈ ( ordTop ‘ 𝑅 ) ( 𝑦 ∈ 𝑛 ∧ 𝑥 ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) ↔ ( 𝑥 ≠ 𝑦 → ∃ 𝑚 ∈ ( ordTop ‘ 𝑅 ) ∃ 𝑛 ∈ ( ordTop ‘ 𝑅 ) ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) |
| 14 | 3 13 | imbitrdi | ⊢ ( ( 𝑅 ∈ TosetRel ∧ 𝑦 ∈ dom 𝑅 ∧ 𝑥 ∈ dom 𝑅 ) → ( 𝑦 𝑅 𝑥 → ( 𝑥 ≠ 𝑦 → ∃ 𝑚 ∈ ( ordTop ‘ 𝑅 ) ∃ 𝑛 ∈ ( ordTop ‘ 𝑅 ) ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) ) |
| 15 | 14 | 3com23 | ⊢ ( ( 𝑅 ∈ TosetRel ∧ 𝑥 ∈ dom 𝑅 ∧ 𝑦 ∈ dom 𝑅 ) → ( 𝑦 𝑅 𝑥 → ( 𝑥 ≠ 𝑦 → ∃ 𝑚 ∈ ( ordTop ‘ 𝑅 ) ∃ 𝑛 ∈ ( ordTop ‘ 𝑅 ) ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) ) |
| 16 | 1 | tsrlin | ⊢ ( ( 𝑅 ∈ TosetRel ∧ 𝑥 ∈ dom 𝑅 ∧ 𝑦 ∈ dom 𝑅 ) → ( 𝑥 𝑅 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) |
| 17 | 2 15 16 | mpjaod | ⊢ ( ( 𝑅 ∈ TosetRel ∧ 𝑥 ∈ dom 𝑅 ∧ 𝑦 ∈ dom 𝑅 ) → ( 𝑥 ≠ 𝑦 → ∃ 𝑚 ∈ ( ordTop ‘ 𝑅 ) ∃ 𝑛 ∈ ( ordTop ‘ 𝑅 ) ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) |
| 18 | 17 | 3expb | ⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑥 ∈ dom 𝑅 ∧ 𝑦 ∈ dom 𝑅 ) ) → ( 𝑥 ≠ 𝑦 → ∃ 𝑚 ∈ ( ordTop ‘ 𝑅 ) ∃ 𝑛 ∈ ( ordTop ‘ 𝑅 ) ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) |
| 19 | 18 | ralrimivva | ⊢ ( 𝑅 ∈ TosetRel → ∀ 𝑥 ∈ dom 𝑅 ∀ 𝑦 ∈ dom 𝑅 ( 𝑥 ≠ 𝑦 → ∃ 𝑚 ∈ ( ordTop ‘ 𝑅 ) ∃ 𝑛 ∈ ( ordTop ‘ 𝑅 ) ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) |
| 20 | 1 | ordttopon | ⊢ ( 𝑅 ∈ TosetRel → ( ordTop ‘ 𝑅 ) ∈ ( TopOn ‘ dom 𝑅 ) ) |
| 21 | ishaus2 | ⊢ ( ( ordTop ‘ 𝑅 ) ∈ ( TopOn ‘ dom 𝑅 ) → ( ( ordTop ‘ 𝑅 ) ∈ Haus ↔ ∀ 𝑥 ∈ dom 𝑅 ∀ 𝑦 ∈ dom 𝑅 ( 𝑥 ≠ 𝑦 → ∃ 𝑚 ∈ ( ordTop ‘ 𝑅 ) ∃ 𝑛 ∈ ( ordTop ‘ 𝑅 ) ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) ) | |
| 22 | 20 21 | syl | ⊢ ( 𝑅 ∈ TosetRel → ( ( ordTop ‘ 𝑅 ) ∈ Haus ↔ ∀ 𝑥 ∈ dom 𝑅 ∀ 𝑦 ∈ dom 𝑅 ( 𝑥 ≠ 𝑦 → ∃ 𝑚 ∈ ( ordTop ‘ 𝑅 ) ∃ 𝑛 ∈ ( ordTop ‘ 𝑅 ) ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) ) |
| 23 | 19 22 | mpbird | ⊢ ( 𝑅 ∈ TosetRel → ( ordTop ‘ 𝑅 ) ∈ Haus ) |