This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A toset is a linear order. (Contributed by Mario Carneiro, 9-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | istsr.1 | ⊢ 𝑋 = dom 𝑅 | |
| Assertion | tsrlin | ⊢ ( ( 𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑅 𝐵 ∨ 𝐵 𝑅 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istsr.1 | ⊢ 𝑋 = dom 𝑅 | |
| 2 | 1 | istsr2 | ⊢ ( 𝑅 ∈ TosetRel ↔ ( 𝑅 ∈ PosetRel ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑅 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) |
| 3 | 2 | simprbi | ⊢ ( 𝑅 ∈ TosetRel → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑅 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) |
| 4 | breq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝑅 𝑦 ↔ 𝐴 𝑅 𝑦 ) ) | |
| 5 | breq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝑦 𝑅 𝑥 ↔ 𝑦 𝑅 𝐴 ) ) | |
| 6 | 4 5 | orbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 𝑅 𝑦 ∨ 𝑦 𝑅 𝑥 ) ↔ ( 𝐴 𝑅 𝑦 ∨ 𝑦 𝑅 𝐴 ) ) ) |
| 7 | breq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 𝑅 𝑦 ↔ 𝐴 𝑅 𝐵 ) ) | |
| 8 | breq1 | ⊢ ( 𝑦 = 𝐵 → ( 𝑦 𝑅 𝐴 ↔ 𝐵 𝑅 𝐴 ) ) | |
| 9 | 7 8 | orbi12d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 𝑅 𝑦 ∨ 𝑦 𝑅 𝐴 ) ↔ ( 𝐴 𝑅 𝐵 ∨ 𝐵 𝑅 𝐴 ) ) ) |
| 10 | 6 9 | rspc2v | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑅 𝑦 ∨ 𝑦 𝑅 𝑥 ) → ( 𝐴 𝑅 𝐵 ∨ 𝐵 𝑅 𝐴 ) ) ) |
| 11 | 3 10 | syl5com | ⊢ ( 𝑅 ∈ TosetRel → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑅 𝐵 ∨ 𝐵 𝑅 𝐴 ) ) ) |
| 12 | 11 | 3impib | ⊢ ( ( 𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑅 𝐵 ∨ 𝐵 𝑅 𝐴 ) ) |