This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed interval [ A , B ] is closed. (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ordttopon.3 | |- X = dom R |
|
| Assertion | ordtcld3 | |- ( ( R e. V /\ A e. X /\ B e. X ) -> { x e. X | ( A R x /\ x R B ) } e. ( Clsd ` ( ordTop ` R ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordttopon.3 | |- X = dom R |
|
| 2 | inrab | |- ( { x e. X | A R x } i^i { x e. X | x R B } ) = { x e. X | ( A R x /\ x R B ) } |
|
| 3 | 1 | ordtcld2 | |- ( ( R e. V /\ A e. X ) -> { x e. X | A R x } e. ( Clsd ` ( ordTop ` R ) ) ) |
| 4 | 3 | 3adant3 | |- ( ( R e. V /\ A e. X /\ B e. X ) -> { x e. X | A R x } e. ( Clsd ` ( ordTop ` R ) ) ) |
| 5 | 1 | ordtcld1 | |- ( ( R e. V /\ B e. X ) -> { x e. X | x R B } e. ( Clsd ` ( ordTop ` R ) ) ) |
| 6 | incld | |- ( ( { x e. X | A R x } e. ( Clsd ` ( ordTop ` R ) ) /\ { x e. X | x R B } e. ( Clsd ` ( ordTop ` R ) ) ) -> ( { x e. X | A R x } i^i { x e. X | x R B } ) e. ( Clsd ` ( ordTop ` R ) ) ) |
|
| 7 | 4 5 6 | 3imp3i2an | |- ( ( R e. V /\ A e. X /\ B e. X ) -> ( { x e. X | A R x } i^i { x e. X | x R B } ) e. ( Clsd ` ( ordTop ` R ) ) ) |
| 8 | 2 7 | eqeltrrid | |- ( ( R e. V /\ A e. X /\ B e. X ) -> { x e. X | ( A R x /\ x R B ) } e. ( Clsd ` ( ordTop ` R ) ) ) |