This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is no set between an ordinal class and its successor. Generalized Proposition 7.25 of TakeutiZaring p. 41. Lemma 1.15 of Schloeder p. 2. (Contributed by NM, 21-Jun-1998) (Proof shortened by JJ, 24-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordnbtwn | ⊢ ( Ord 𝐴 → ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordirr | ⊢ ( Ord 𝐴 → ¬ 𝐴 ∈ 𝐴 ) | |
| 2 | ordn2lp | ⊢ ( Ord 𝐴 → ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴 ) ) | |
| 3 | pm2.24 | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴 ) → ( ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴 ) → 𝐴 ∈ 𝐴 ) ) | |
| 4 | eleq2 | ⊢ ( 𝐵 = 𝐴 → ( 𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐴 ) ) | |
| 5 | 4 | biimpac | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 = 𝐴 ) → 𝐴 ∈ 𝐴 ) |
| 6 | 5 | a1d | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 = 𝐴 ) → ( ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴 ) → 𝐴 ∈ 𝐴 ) ) |
| 7 | 3 6 | jaodan | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ ( 𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴 ) ) → ( ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴 ) → 𝐴 ∈ 𝐴 ) ) |
| 8 | 2 7 | syl5com | ⊢ ( Ord 𝐴 → ( ( 𝐴 ∈ 𝐵 ∧ ( 𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴 ) ) → 𝐴 ∈ 𝐴 ) ) |
| 9 | 1 8 | mtod | ⊢ ( Ord 𝐴 → ¬ ( 𝐴 ∈ 𝐵 ∧ ( 𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴 ) ) ) |
| 10 | elsuci | ⊢ ( 𝐵 ∈ suc 𝐴 → ( 𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴 ) ) | |
| 11 | 10 | anim2i | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴 ) → ( 𝐴 ∈ 𝐵 ∧ ( 𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴 ) ) ) |
| 12 | 9 11 | nsyl | ⊢ ( Ord 𝐴 → ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴 ) ) |