This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is no set between an ordinal class and its successor. Generalized Proposition 7.25 of TakeutiZaring p. 41. Lemma 1.15 of Schloeder p. 2. (Contributed by NM, 21-Jun-1998) (Proof shortened by JJ, 24-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordnbtwn |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordirr | ||
| 2 | ordn2lp | ||
| 3 | pm2.24 | ||
| 4 | eleq2 | ||
| 5 | 4 | biimpac | |
| 6 | 5 | a1d | |
| 7 | 3 6 | jaodan | |
| 8 | 2 7 | syl5com | |
| 9 | 1 8 | mtod | |
| 10 | elsuci | ||
| 11 | 10 | anim2i | |
| 12 | 9 11 | nsyl |