This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is no set between an ordinal class and its successor. Generalized Proposition 7.25 of TakeutiZaring p. 41. Lemma 1.15 of Schloeder p. 2. (Contributed by NM, 21-Jun-1998) (Proof shortened by JJ, 24-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordnbtwn | |- ( Ord A -> -. ( A e. B /\ B e. suc A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordirr | |- ( Ord A -> -. A e. A ) |
|
| 2 | ordn2lp | |- ( Ord A -> -. ( A e. B /\ B e. A ) ) |
|
| 3 | pm2.24 | |- ( ( A e. B /\ B e. A ) -> ( -. ( A e. B /\ B e. A ) -> A e. A ) ) |
|
| 4 | eleq2 | |- ( B = A -> ( A e. B <-> A e. A ) ) |
|
| 5 | 4 | biimpac | |- ( ( A e. B /\ B = A ) -> A e. A ) |
| 6 | 5 | a1d | |- ( ( A e. B /\ B = A ) -> ( -. ( A e. B /\ B e. A ) -> A e. A ) ) |
| 7 | 3 6 | jaodan | |- ( ( A e. B /\ ( B e. A \/ B = A ) ) -> ( -. ( A e. B /\ B e. A ) -> A e. A ) ) |
| 8 | 2 7 | syl5com | |- ( Ord A -> ( ( A e. B /\ ( B e. A \/ B = A ) ) -> A e. A ) ) |
| 9 | 1 8 | mtod | |- ( Ord A -> -. ( A e. B /\ ( B e. A \/ B = A ) ) ) |
| 10 | elsuci | |- ( B e. suc A -> ( B e. A \/ B = A ) ) |
|
| 11 | 10 | anim2i | |- ( ( A e. B /\ B e. suc A ) -> ( A e. B /\ ( B e. A \/ B = A ) ) ) |
| 12 | 9 11 | nsyl | |- ( Ord A -> -. ( A e. B /\ B e. suc A ) ) |