This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem for alternate representation of ordered pairs, requiring the Axiom of Regularity ax-reg (via the preleq step). See df-op for a description of other ordered pair representations. Exercise 34 of Enderton p. 207. (Contributed by NM, 16-Oct-1996) (Proof shortened by AV, 15-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opthreg.1 | ⊢ 𝐴 ∈ V | |
| opthreg.2 | ⊢ 𝐵 ∈ V | ||
| opthreg.3 | ⊢ 𝐶 ∈ V | ||
| opthreg.4 | ⊢ 𝐷 ∈ V | ||
| Assertion | opthreg | ⊢ ( { 𝐴 , { 𝐴 , 𝐵 } } = { 𝐶 , { 𝐶 , 𝐷 } } ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opthreg.1 | ⊢ 𝐴 ∈ V | |
| 2 | opthreg.2 | ⊢ 𝐵 ∈ V | |
| 3 | opthreg.3 | ⊢ 𝐶 ∈ V | |
| 4 | opthreg.4 | ⊢ 𝐷 ∈ V | |
| 5 | 1 | prid1 | ⊢ 𝐴 ∈ { 𝐴 , 𝐵 } |
| 6 | 3 | prid1 | ⊢ 𝐶 ∈ { 𝐶 , 𝐷 } |
| 7 | prex | ⊢ { 𝐴 , 𝐵 } ∈ V | |
| 8 | 7 | preleq | ⊢ ( ( ( 𝐴 ∈ { 𝐴 , 𝐵 } ∧ 𝐶 ∈ { 𝐶 , 𝐷 } ) ∧ { 𝐴 , { 𝐴 , 𝐵 } } = { 𝐶 , { 𝐶 , 𝐷 } } ) → ( 𝐴 = 𝐶 ∧ { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
| 9 | 5 6 8 | mpanl12 | ⊢ ( { 𝐴 , { 𝐴 , 𝐵 } } = { 𝐶 , { 𝐶 , 𝐷 } } → ( 𝐴 = 𝐶 ∧ { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
| 10 | preq1 | ⊢ ( 𝐴 = 𝐶 → { 𝐴 , 𝐵 } = { 𝐶 , 𝐵 } ) | |
| 11 | 10 | eqeq1d | ⊢ ( 𝐴 = 𝐶 → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ { 𝐶 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
| 12 | 2 4 | preqr2 | ⊢ ( { 𝐶 , 𝐵 } = { 𝐶 , 𝐷 } → 𝐵 = 𝐷 ) |
| 13 | 11 12 | biimtrdi | ⊢ ( 𝐴 = 𝐶 → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } → 𝐵 = 𝐷 ) ) |
| 14 | 13 | imdistani | ⊢ ( ( 𝐴 = 𝐶 ∧ { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
| 15 | 9 14 | syl | ⊢ ( { 𝐴 , { 𝐴 , 𝐵 } } = { 𝐶 , { 𝐶 , 𝐷 } } → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
| 16 | preq1 | ⊢ ( 𝐴 = 𝐶 → { 𝐴 , { 𝐴 , 𝐵 } } = { 𝐶 , { 𝐴 , 𝐵 } } ) | |
| 17 | 16 | adantr | ⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → { 𝐴 , { 𝐴 , 𝐵 } } = { 𝐶 , { 𝐴 , 𝐵 } } ) |
| 18 | preq12 | ⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) | |
| 19 | 18 | preq2d | ⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → { 𝐶 , { 𝐴 , 𝐵 } } = { 𝐶 , { 𝐶 , 𝐷 } } ) |
| 20 | 17 19 | eqtrd | ⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → { 𝐴 , { 𝐴 , 𝐵 } } = { 𝐶 , { 𝐶 , 𝐷 } } ) |
| 21 | 15 20 | impbii | ⊢ ( { 𝐴 , { 𝐴 , 𝐵 } } = { 𝐶 , { 𝐶 , 𝐷 } } ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |