This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem for alternate representation of ordered pairs, requiring the Axiom of Regularity ax-reg (via the preleq step). See df-op for a description of other ordered pair representations. Exercise 34 of Enderton p. 207. (Contributed by NM, 16-Oct-1996) (Proof shortened by AV, 15-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opthreg.1 | ||
| opthreg.2 | |||
| opthreg.3 | |||
| opthreg.4 | |||
| Assertion | opthreg |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opthreg.1 | ||
| 2 | opthreg.2 | ||
| 3 | opthreg.3 | ||
| 4 | opthreg.4 | ||
| 5 | 1 | prid1 | |
| 6 | 3 | prid1 | |
| 7 | prex | ||
| 8 | 7 | preleq | |
| 9 | 5 6 8 | mpanl12 | |
| 10 | preq1 | ||
| 11 | 10 | eqeq1d | |
| 12 | 2 4 | preqr2 | |
| 13 | 11 12 | biimtrdi | |
| 14 | 13 | imdistani | |
| 15 | 9 14 | syl | |
| 16 | preq1 | ||
| 17 | 16 | adantr | |
| 18 | preq12 | ||
| 19 | 18 | preq2d | |
| 20 | 17 19 | eqtrd | |
| 21 | 15 20 | impbii |