This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The successor operation behaves like a one-to-one function (assuming the Axiom of Regularity). Exercise 35 of Enderton p. 208 and its converse. (Contributed by NM, 25-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | suc11reg | ⊢ ( suc 𝐴 = suc 𝐵 ↔ 𝐴 = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | en2lp | ⊢ ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴 ) | |
| 2 | ianor | ⊢ ( ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴 ) ↔ ( ¬ 𝐴 ∈ 𝐵 ∨ ¬ 𝐵 ∈ 𝐴 ) ) | |
| 3 | 1 2 | mpbi | ⊢ ( ¬ 𝐴 ∈ 𝐵 ∨ ¬ 𝐵 ∈ 𝐴 ) |
| 4 | sucidg | ⊢ ( 𝐴 ∈ V → 𝐴 ∈ suc 𝐴 ) | |
| 5 | eleq2 | ⊢ ( suc 𝐴 = suc 𝐵 → ( 𝐴 ∈ suc 𝐴 ↔ 𝐴 ∈ suc 𝐵 ) ) | |
| 6 | 4 5 | syl5ibcom | ⊢ ( 𝐴 ∈ V → ( suc 𝐴 = suc 𝐵 → 𝐴 ∈ suc 𝐵 ) ) |
| 7 | elsucg | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ suc 𝐵 ↔ ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ) ) ) | |
| 8 | 6 7 | sylibd | ⊢ ( 𝐴 ∈ V → ( suc 𝐴 = suc 𝐵 → ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ) ) ) |
| 9 | 8 | imp | ⊢ ( ( 𝐴 ∈ V ∧ suc 𝐴 = suc 𝐵 ) → ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ) ) |
| 10 | 9 | ord | ⊢ ( ( 𝐴 ∈ V ∧ suc 𝐴 = suc 𝐵 ) → ( ¬ 𝐴 ∈ 𝐵 → 𝐴 = 𝐵 ) ) |
| 11 | 10 | ex | ⊢ ( 𝐴 ∈ V → ( suc 𝐴 = suc 𝐵 → ( ¬ 𝐴 ∈ 𝐵 → 𝐴 = 𝐵 ) ) ) |
| 12 | 11 | com23 | ⊢ ( 𝐴 ∈ V → ( ¬ 𝐴 ∈ 𝐵 → ( suc 𝐴 = suc 𝐵 → 𝐴 = 𝐵 ) ) ) |
| 13 | sucidg | ⊢ ( 𝐵 ∈ V → 𝐵 ∈ suc 𝐵 ) | |
| 14 | eleq2 | ⊢ ( suc 𝐴 = suc 𝐵 → ( 𝐵 ∈ suc 𝐴 ↔ 𝐵 ∈ suc 𝐵 ) ) | |
| 15 | 13 14 | syl5ibrcom | ⊢ ( 𝐵 ∈ V → ( suc 𝐴 = suc 𝐵 → 𝐵 ∈ suc 𝐴 ) ) |
| 16 | elsucg | ⊢ ( 𝐵 ∈ V → ( 𝐵 ∈ suc 𝐴 ↔ ( 𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴 ) ) ) | |
| 17 | 15 16 | sylibd | ⊢ ( 𝐵 ∈ V → ( suc 𝐴 = suc 𝐵 → ( 𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴 ) ) ) |
| 18 | 17 | imp | ⊢ ( ( 𝐵 ∈ V ∧ suc 𝐴 = suc 𝐵 ) → ( 𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴 ) ) |
| 19 | 18 | ord | ⊢ ( ( 𝐵 ∈ V ∧ suc 𝐴 = suc 𝐵 ) → ( ¬ 𝐵 ∈ 𝐴 → 𝐵 = 𝐴 ) ) |
| 20 | eqcom | ⊢ ( 𝐵 = 𝐴 ↔ 𝐴 = 𝐵 ) | |
| 21 | 19 20 | imbitrdi | ⊢ ( ( 𝐵 ∈ V ∧ suc 𝐴 = suc 𝐵 ) → ( ¬ 𝐵 ∈ 𝐴 → 𝐴 = 𝐵 ) ) |
| 22 | 21 | ex | ⊢ ( 𝐵 ∈ V → ( suc 𝐴 = suc 𝐵 → ( ¬ 𝐵 ∈ 𝐴 → 𝐴 = 𝐵 ) ) ) |
| 23 | 22 | com23 | ⊢ ( 𝐵 ∈ V → ( ¬ 𝐵 ∈ 𝐴 → ( suc 𝐴 = suc 𝐵 → 𝐴 = 𝐵 ) ) ) |
| 24 | 12 23 | jaao | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( ( ¬ 𝐴 ∈ 𝐵 ∨ ¬ 𝐵 ∈ 𝐴 ) → ( suc 𝐴 = suc 𝐵 → 𝐴 = 𝐵 ) ) ) |
| 25 | 3 24 | mpi | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( suc 𝐴 = suc 𝐵 → 𝐴 = 𝐵 ) ) |
| 26 | sucexb | ⊢ ( 𝐴 ∈ V ↔ suc 𝐴 ∈ V ) | |
| 27 | sucexb | ⊢ ( 𝐵 ∈ V ↔ suc 𝐵 ∈ V ) | |
| 28 | 27 | notbii | ⊢ ( ¬ 𝐵 ∈ V ↔ ¬ suc 𝐵 ∈ V ) |
| 29 | nelneq | ⊢ ( ( suc 𝐴 ∈ V ∧ ¬ suc 𝐵 ∈ V ) → ¬ suc 𝐴 = suc 𝐵 ) | |
| 30 | 26 28 29 | syl2anb | ⊢ ( ( 𝐴 ∈ V ∧ ¬ 𝐵 ∈ V ) → ¬ suc 𝐴 = suc 𝐵 ) |
| 31 | 30 | pm2.21d | ⊢ ( ( 𝐴 ∈ V ∧ ¬ 𝐵 ∈ V ) → ( suc 𝐴 = suc 𝐵 → 𝐴 = 𝐵 ) ) |
| 32 | eqcom | ⊢ ( suc 𝐴 = suc 𝐵 ↔ suc 𝐵 = suc 𝐴 ) | |
| 33 | 26 | notbii | ⊢ ( ¬ 𝐴 ∈ V ↔ ¬ suc 𝐴 ∈ V ) |
| 34 | nelneq | ⊢ ( ( suc 𝐵 ∈ V ∧ ¬ suc 𝐴 ∈ V ) → ¬ suc 𝐵 = suc 𝐴 ) | |
| 35 | 27 33 34 | syl2anb | ⊢ ( ( 𝐵 ∈ V ∧ ¬ 𝐴 ∈ V ) → ¬ suc 𝐵 = suc 𝐴 ) |
| 36 | 35 | ancoms | ⊢ ( ( ¬ 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ¬ suc 𝐵 = suc 𝐴 ) |
| 37 | 36 | pm2.21d | ⊢ ( ( ¬ 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( suc 𝐵 = suc 𝐴 → 𝐴 = 𝐵 ) ) |
| 38 | 32 37 | biimtrid | ⊢ ( ( ¬ 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( suc 𝐴 = suc 𝐵 → 𝐴 = 𝐵 ) ) |
| 39 | sucprc | ⊢ ( ¬ 𝐴 ∈ V → suc 𝐴 = 𝐴 ) | |
| 40 | sucprc | ⊢ ( ¬ 𝐵 ∈ V → suc 𝐵 = 𝐵 ) | |
| 41 | 39 40 | eqeqan12d | ⊢ ( ( ¬ 𝐴 ∈ V ∧ ¬ 𝐵 ∈ V ) → ( suc 𝐴 = suc 𝐵 ↔ 𝐴 = 𝐵 ) ) |
| 42 | 41 | biimpd | ⊢ ( ( ¬ 𝐴 ∈ V ∧ ¬ 𝐵 ∈ V ) → ( suc 𝐴 = suc 𝐵 → 𝐴 = 𝐵 ) ) |
| 43 | 25 31 38 42 | 4cases | ⊢ ( suc 𝐴 = suc 𝐵 → 𝐴 = 𝐵 ) |
| 44 | suceq | ⊢ ( 𝐴 = 𝐵 → suc 𝐴 = suc 𝐵 ) | |
| 45 | 43 44 | impbii | ⊢ ( suc 𝐴 = suc 𝐵 ↔ 𝐴 = 𝐵 ) |