This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem for alternate representation of ordered pairs, requiring the Axiom of Regularity ax-reg (via the preleq step). See df-op for a description of other ordered pair representations. Exercise 34 of Enderton p. 207. (Contributed by NM, 16-Oct-1996) (Proof shortened by AV, 15-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opthreg.1 | |- A e. _V |
|
| opthreg.2 | |- B e. _V |
||
| opthreg.3 | |- C e. _V |
||
| opthreg.4 | |- D e. _V |
||
| Assertion | opthreg | |- ( { A , { A , B } } = { C , { C , D } } <-> ( A = C /\ B = D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opthreg.1 | |- A e. _V |
|
| 2 | opthreg.2 | |- B e. _V |
|
| 3 | opthreg.3 | |- C e. _V |
|
| 4 | opthreg.4 | |- D e. _V |
|
| 5 | 1 | prid1 | |- A e. { A , B } |
| 6 | 3 | prid1 | |- C e. { C , D } |
| 7 | prex | |- { A , B } e. _V |
|
| 8 | 7 | preleq | |- ( ( ( A e. { A , B } /\ C e. { C , D } ) /\ { A , { A , B } } = { C , { C , D } } ) -> ( A = C /\ { A , B } = { C , D } ) ) |
| 9 | 5 6 8 | mpanl12 | |- ( { A , { A , B } } = { C , { C , D } } -> ( A = C /\ { A , B } = { C , D } ) ) |
| 10 | preq1 | |- ( A = C -> { A , B } = { C , B } ) |
|
| 11 | 10 | eqeq1d | |- ( A = C -> ( { A , B } = { C , D } <-> { C , B } = { C , D } ) ) |
| 12 | 2 4 | preqr2 | |- ( { C , B } = { C , D } -> B = D ) |
| 13 | 11 12 | biimtrdi | |- ( A = C -> ( { A , B } = { C , D } -> B = D ) ) |
| 14 | 13 | imdistani | |- ( ( A = C /\ { A , B } = { C , D } ) -> ( A = C /\ B = D ) ) |
| 15 | 9 14 | syl | |- ( { A , { A , B } } = { C , { C , D } } -> ( A = C /\ B = D ) ) |
| 16 | preq1 | |- ( A = C -> { A , { A , B } } = { C , { A , B } } ) |
|
| 17 | 16 | adantr | |- ( ( A = C /\ B = D ) -> { A , { A , B } } = { C , { A , B } } ) |
| 18 | preq12 | |- ( ( A = C /\ B = D ) -> { A , B } = { C , D } ) |
|
| 19 | 18 | preq2d | |- ( ( A = C /\ B = D ) -> { C , { A , B } } = { C , { C , D } } ) |
| 20 | 17 19 | eqtrd | |- ( ( A = C /\ B = D ) -> { A , { A , B } } = { C , { C , D } } ) |
| 21 | 15 20 | impbii | |- ( { A , { A , B } } = { C , { C , D } } <-> ( A = C /\ B = D ) ) |