This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An unordered pair has the ordered pair property (compare opth ) under certain conditions. Variant of opthpr in closed form. (Contributed by AV, 13-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opthprneg | |- ( ( ( A e. V /\ B e. W ) /\ ( A =/= B /\ A =/= D ) ) -> ( { A , B } = { C , D } <-> ( A = C /\ B = D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq12bg | |- ( ( ( A e. V /\ B e. W ) /\ ( C e. _V /\ D e. _V ) ) -> ( { A , B } = { C , D } <-> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) ) |
|
| 2 | 1 | adantlr | |- ( ( ( ( A e. V /\ B e. W ) /\ ( A =/= B /\ A =/= D ) ) /\ ( C e. _V /\ D e. _V ) ) -> ( { A , B } = { C , D } <-> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) ) |
| 3 | idd | |- ( A =/= D -> ( ( A = C /\ B = D ) -> ( A = C /\ B = D ) ) ) |
|
| 4 | df-ne | |- ( A =/= D <-> -. A = D ) |
|
| 5 | pm2.21 | |- ( -. A = D -> ( A = D -> ( B = C -> ( A = C /\ B = D ) ) ) ) |
|
| 6 | 4 5 | sylbi | |- ( A =/= D -> ( A = D -> ( B = C -> ( A = C /\ B = D ) ) ) ) |
| 7 | 6 | impd | |- ( A =/= D -> ( ( A = D /\ B = C ) -> ( A = C /\ B = D ) ) ) |
| 8 | 3 7 | jaod | |- ( A =/= D -> ( ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) -> ( A = C /\ B = D ) ) ) |
| 9 | orc | |- ( ( A = C /\ B = D ) -> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) |
|
| 10 | 8 9 | impbid1 | |- ( A =/= D -> ( ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) <-> ( A = C /\ B = D ) ) ) |
| 11 | 10 | adantl | |- ( ( A =/= B /\ A =/= D ) -> ( ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) <-> ( A = C /\ B = D ) ) ) |
| 12 | 11 | ad2antlr | |- ( ( ( ( A e. V /\ B e. W ) /\ ( A =/= B /\ A =/= D ) ) /\ ( C e. _V /\ D e. _V ) ) -> ( ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) <-> ( A = C /\ B = D ) ) ) |
| 13 | 2 12 | bitrd | |- ( ( ( ( A e. V /\ B e. W ) /\ ( A =/= B /\ A =/= D ) ) /\ ( C e. _V /\ D e. _V ) ) -> ( { A , B } = { C , D } <-> ( A = C /\ B = D ) ) ) |
| 14 | 13 | expcom | |- ( ( C e. _V /\ D e. _V ) -> ( ( ( A e. V /\ B e. W ) /\ ( A =/= B /\ A =/= D ) ) -> ( { A , B } = { C , D } <-> ( A = C /\ B = D ) ) ) ) |
| 15 | ianor | |- ( -. ( C e. _V /\ D e. _V ) <-> ( -. C e. _V \/ -. D e. _V ) ) |
|
| 16 | simpl | |- ( ( A =/= B /\ A =/= D ) -> A =/= B ) |
|
| 17 | 16 | anim2i | |- ( ( ( A e. V /\ B e. W ) /\ ( A =/= B /\ A =/= D ) ) -> ( ( A e. V /\ B e. W ) /\ A =/= B ) ) |
| 18 | df-3an | |- ( ( A e. V /\ B e. W /\ A =/= B ) <-> ( ( A e. V /\ B e. W ) /\ A =/= B ) ) |
|
| 19 | 17 18 | sylibr | |- ( ( ( A e. V /\ B e. W ) /\ ( A =/= B /\ A =/= D ) ) -> ( A e. V /\ B e. W /\ A =/= B ) ) |
| 20 | prneprprc | |- ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ -. C e. _V ) -> { A , B } =/= { C , D } ) |
|
| 21 | 19 20 | sylan | |- ( ( ( ( A e. V /\ B e. W ) /\ ( A =/= B /\ A =/= D ) ) /\ -. C e. _V ) -> { A , B } =/= { C , D } ) |
| 22 | 21 | ancoms | |- ( ( -. C e. _V /\ ( ( A e. V /\ B e. W ) /\ ( A =/= B /\ A =/= D ) ) ) -> { A , B } =/= { C , D } ) |
| 23 | eqneqall | |- ( { A , B } = { C , D } -> ( { A , B } =/= { C , D } -> ( A = C /\ B = D ) ) ) |
|
| 24 | 22 23 | syl5com | |- ( ( -. C e. _V /\ ( ( A e. V /\ B e. W ) /\ ( A =/= B /\ A =/= D ) ) ) -> ( { A , B } = { C , D } -> ( A = C /\ B = D ) ) ) |
| 25 | prneprprc | |- ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ -. D e. _V ) -> { A , B } =/= { D , C } ) |
|
| 26 | 19 25 | sylan | |- ( ( ( ( A e. V /\ B e. W ) /\ ( A =/= B /\ A =/= D ) ) /\ -. D e. _V ) -> { A , B } =/= { D , C } ) |
| 27 | 26 | ancoms | |- ( ( -. D e. _V /\ ( ( A e. V /\ B e. W ) /\ ( A =/= B /\ A =/= D ) ) ) -> { A , B } =/= { D , C } ) |
| 28 | prcom | |- { C , D } = { D , C } |
|
| 29 | 28 | eqeq2i | |- ( { A , B } = { C , D } <-> { A , B } = { D , C } ) |
| 30 | eqneqall | |- ( { A , B } = { D , C } -> ( { A , B } =/= { D , C } -> ( A = C /\ B = D ) ) ) |
|
| 31 | 29 30 | sylbi | |- ( { A , B } = { C , D } -> ( { A , B } =/= { D , C } -> ( A = C /\ B = D ) ) ) |
| 32 | 27 31 | syl5com | |- ( ( -. D e. _V /\ ( ( A e. V /\ B e. W ) /\ ( A =/= B /\ A =/= D ) ) ) -> ( { A , B } = { C , D } -> ( A = C /\ B = D ) ) ) |
| 33 | 24 32 | jaoian | |- ( ( ( -. C e. _V \/ -. D e. _V ) /\ ( ( A e. V /\ B e. W ) /\ ( A =/= B /\ A =/= D ) ) ) -> ( { A , B } = { C , D } -> ( A = C /\ B = D ) ) ) |
| 34 | preq12 | |- ( ( A = C /\ B = D ) -> { A , B } = { C , D } ) |
|
| 35 | 33 34 | impbid1 | |- ( ( ( -. C e. _V \/ -. D e. _V ) /\ ( ( A e. V /\ B e. W ) /\ ( A =/= B /\ A =/= D ) ) ) -> ( { A , B } = { C , D } <-> ( A = C /\ B = D ) ) ) |
| 36 | 35 | ex | |- ( ( -. C e. _V \/ -. D e. _V ) -> ( ( ( A e. V /\ B e. W ) /\ ( A =/= B /\ A =/= D ) ) -> ( { A , B } = { C , D } <-> ( A = C /\ B = D ) ) ) ) |
| 37 | 15 36 | sylbi | |- ( -. ( C e. _V /\ D e. _V ) -> ( ( ( A e. V /\ B e. W ) /\ ( A =/= B /\ A =/= D ) ) -> ( { A , B } = { C , D } <-> ( A = C /\ B = D ) ) ) ) |
| 38 | 14 37 | pm2.61i | |- ( ( ( A e. V /\ B e. W ) /\ ( A =/= B /\ A =/= D ) ) -> ( { A , B } = { C , D } <-> ( A = C /\ B = D ) ) ) |