This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An unordered pair has the ordered pair property (compare opth ) under certain conditions. (Contributed by NM, 27-Mar-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | preqr1.a | ⊢ 𝐴 ∈ V | |
| preqr1.b | ⊢ 𝐵 ∈ V | ||
| preq12b.c | ⊢ 𝐶 ∈ V | ||
| preq12b.d | ⊢ 𝐷 ∈ V | ||
| Assertion | opthpr | ⊢ ( 𝐴 ≠ 𝐷 → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preqr1.a | ⊢ 𝐴 ∈ V | |
| 2 | preqr1.b | ⊢ 𝐵 ∈ V | |
| 3 | preq12b.c | ⊢ 𝐶 ∈ V | |
| 4 | preq12b.d | ⊢ 𝐷 ∈ V | |
| 5 | 1 2 3 4 | preq12b | ⊢ ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) |
| 6 | idd | ⊢ ( 𝐴 ≠ 𝐷 → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) | |
| 7 | df-ne | ⊢ ( 𝐴 ≠ 𝐷 ↔ ¬ 𝐴 = 𝐷 ) | |
| 8 | pm2.21 | ⊢ ( ¬ 𝐴 = 𝐷 → ( 𝐴 = 𝐷 → ( 𝐵 = 𝐶 → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) ) | |
| 9 | 7 8 | sylbi | ⊢ ( 𝐴 ≠ 𝐷 → ( 𝐴 = 𝐷 → ( 𝐵 = 𝐶 → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) ) |
| 10 | 9 | impd | ⊢ ( 𝐴 ≠ 𝐷 → ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 11 | 6 10 | jaod | ⊢ ( 𝐴 ≠ 𝐷 → ( ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 12 | orc | ⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) | |
| 13 | 11 12 | impbid1 | ⊢ ( 𝐴 ≠ 𝐷 → ( ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 14 | 5 13 | bitrid | ⊢ ( 𝐴 ≠ 𝐷 → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |