This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for elpreqpr . (Contributed by Scott Fenton, 7-Dec-2020) (Revised by AV, 9-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elpreqprlem | ⊢ ( 𝐵 ∈ 𝑉 → ∃ 𝑥 { 𝐵 , 𝐶 } = { 𝐵 , 𝑥 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ { 𝐵 , 𝐶 } = { 𝐵 , 𝐶 } | |
| 2 | preq2 | ⊢ ( 𝑥 = 𝐶 → { 𝐵 , 𝑥 } = { 𝐵 , 𝐶 } ) | |
| 3 | 2 | eqeq2d | ⊢ ( 𝑥 = 𝐶 → ( { 𝐵 , 𝐶 } = { 𝐵 , 𝑥 } ↔ { 𝐵 , 𝐶 } = { 𝐵 , 𝐶 } ) ) |
| 4 | 3 | spcegv | ⊢ ( 𝐶 ∈ V → ( { 𝐵 , 𝐶 } = { 𝐵 , 𝐶 } → ∃ 𝑥 { 𝐵 , 𝐶 } = { 𝐵 , 𝑥 } ) ) |
| 5 | 1 4 | mpi | ⊢ ( 𝐶 ∈ V → ∃ 𝑥 { 𝐵 , 𝐶 } = { 𝐵 , 𝑥 } ) |
| 6 | 5 | a1d | ⊢ ( 𝐶 ∈ V → ( 𝐵 ∈ 𝑉 → ∃ 𝑥 { 𝐵 , 𝐶 } = { 𝐵 , 𝑥 } ) ) |
| 7 | dfsn2 | ⊢ { 𝐵 } = { 𝐵 , 𝐵 } | |
| 8 | preq2 | ⊢ ( 𝑥 = 𝐵 → { 𝐵 , 𝑥 } = { 𝐵 , 𝐵 } ) | |
| 9 | 8 | eqeq2d | ⊢ ( 𝑥 = 𝐵 → ( { 𝐵 } = { 𝐵 , 𝑥 } ↔ { 𝐵 } = { 𝐵 , 𝐵 } ) ) |
| 10 | 9 | spcegv | ⊢ ( 𝐵 ∈ 𝑉 → ( { 𝐵 } = { 𝐵 , 𝐵 } → ∃ 𝑥 { 𝐵 } = { 𝐵 , 𝑥 } ) ) |
| 11 | 7 10 | mpi | ⊢ ( 𝐵 ∈ 𝑉 → ∃ 𝑥 { 𝐵 } = { 𝐵 , 𝑥 } ) |
| 12 | prprc2 | ⊢ ( ¬ 𝐶 ∈ V → { 𝐵 , 𝐶 } = { 𝐵 } ) | |
| 13 | 12 | eqeq1d | ⊢ ( ¬ 𝐶 ∈ V → ( { 𝐵 , 𝐶 } = { 𝐵 , 𝑥 } ↔ { 𝐵 } = { 𝐵 , 𝑥 } ) ) |
| 14 | 13 | exbidv | ⊢ ( ¬ 𝐶 ∈ V → ( ∃ 𝑥 { 𝐵 , 𝐶 } = { 𝐵 , 𝑥 } ↔ ∃ 𝑥 { 𝐵 } = { 𝐵 , 𝑥 } ) ) |
| 15 | 11 14 | imbitrrid | ⊢ ( ¬ 𝐶 ∈ V → ( 𝐵 ∈ 𝑉 → ∃ 𝑥 { 𝐵 , 𝐶 } = { 𝐵 , 𝑥 } ) ) |
| 16 | 6 15 | pm2.61i | ⊢ ( 𝐵 ∈ 𝑉 → ∃ 𝑥 { 𝐵 , 𝐶 } = { 𝐵 , 𝑥 } ) |