This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Justification theorem for the ordered pair definition of Felix Hausdorff in "Grundzüge der Mengenlehre" ("Basics of Set Theory"), 1914, p. 32: <. A , B >._H = { { A , O } , { B , T } } . Hausdorff used 1 and 2 instead of O and T , but actually, any two different fixed sets will do (e.g., O = (/) and T = { (/) } , see 0nep0 ). Furthermore, Hausdorff demanded that O and T are both different from A as well as B , which is actually not necessary if all involved classes exist as sets (i.e. are not proper classes), in contrast to opthhausdorff . See df-op for other ordered pair definitions. (Contributed by AV, 12-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opthhausdorff0.a | ⊢ 𝐴 ∈ V | |
| opthhausdorff0.b | ⊢ 𝐵 ∈ V | ||
| opthhausdorff0.c | ⊢ 𝐶 ∈ V | ||
| opthhausdorff0.d | ⊢ 𝐷 ∈ V | ||
| opthhausdorff0.1 | ⊢ 𝑂 ∈ V | ||
| opthhausdorff0.2 | ⊢ 𝑇 ∈ V | ||
| opthhausdorff0.3 | ⊢ 𝑂 ≠ 𝑇 | ||
| Assertion | opthhausdorff0 | ⊢ ( { { 𝐴 , 𝑂 } , { 𝐵 , 𝑇 } } = { { 𝐶 , 𝑂 } , { 𝐷 , 𝑇 } } ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opthhausdorff0.a | ⊢ 𝐴 ∈ V | |
| 2 | opthhausdorff0.b | ⊢ 𝐵 ∈ V | |
| 3 | opthhausdorff0.c | ⊢ 𝐶 ∈ V | |
| 4 | opthhausdorff0.d | ⊢ 𝐷 ∈ V | |
| 5 | opthhausdorff0.1 | ⊢ 𝑂 ∈ V | |
| 6 | opthhausdorff0.2 | ⊢ 𝑇 ∈ V | |
| 7 | opthhausdorff0.3 | ⊢ 𝑂 ≠ 𝑇 | |
| 8 | prex | ⊢ { 𝐴 , 𝑂 } ∈ V | |
| 9 | prex | ⊢ { 𝐵 , 𝑇 } ∈ V | |
| 10 | prex | ⊢ { 𝐶 , 𝑂 } ∈ V | |
| 11 | prex | ⊢ { 𝐷 , 𝑇 } ∈ V | |
| 12 | 8 9 10 11 | preq12b | ⊢ ( { { 𝐴 , 𝑂 } , { 𝐵 , 𝑇 } } = { { 𝐶 , 𝑂 } , { 𝐷 , 𝑇 } } ↔ ( ( { 𝐴 , 𝑂 } = { 𝐶 , 𝑂 } ∧ { 𝐵 , 𝑇 } = { 𝐷 , 𝑇 } ) ∨ ( { 𝐴 , 𝑂 } = { 𝐷 , 𝑇 } ∧ { 𝐵 , 𝑇 } = { 𝐶 , 𝑂 } ) ) ) |
| 13 | 1 3 | preqr1 | ⊢ ( { 𝐴 , 𝑂 } = { 𝐶 , 𝑂 } → 𝐴 = 𝐶 ) |
| 14 | 2 4 | preqr1 | ⊢ ( { 𝐵 , 𝑇 } = { 𝐷 , 𝑇 } → 𝐵 = 𝐷 ) |
| 15 | 13 14 | anim12i | ⊢ ( ( { 𝐴 , 𝑂 } = { 𝐶 , 𝑂 } ∧ { 𝐵 , 𝑇 } = { 𝐷 , 𝑇 } ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
| 16 | 1 5 4 6 | preq12b | ⊢ ( { 𝐴 , 𝑂 } = { 𝐷 , 𝑇 } ↔ ( ( 𝐴 = 𝐷 ∧ 𝑂 = 𝑇 ) ∨ ( 𝐴 = 𝑇 ∧ 𝑂 = 𝐷 ) ) ) |
| 17 | eqneqall | ⊢ ( 𝑂 = 𝑇 → ( 𝑂 ≠ 𝑇 → ( { 𝐵 , 𝑇 } = { 𝐶 , 𝑂 } → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) ) | |
| 18 | 7 17 | mpi | ⊢ ( 𝑂 = 𝑇 → ( { 𝐵 , 𝑇 } = { 𝐶 , 𝑂 } → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 19 | 18 | adantl | ⊢ ( ( 𝐴 = 𝐷 ∧ 𝑂 = 𝑇 ) → ( { 𝐵 , 𝑇 } = { 𝐶 , 𝑂 } → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 20 | 2 6 3 5 | preq12b | ⊢ ( { 𝐵 , 𝑇 } = { 𝐶 , 𝑂 } ↔ ( ( 𝐵 = 𝐶 ∧ 𝑇 = 𝑂 ) ∨ ( 𝐵 = 𝑂 ∧ 𝑇 = 𝐶 ) ) ) |
| 21 | eqneqall | ⊢ ( 𝑂 = 𝑇 → ( 𝑂 ≠ 𝑇 → ( ( 𝐴 = 𝑇 ∧ 𝑂 = 𝐷 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) ) | |
| 22 | 7 21 | mpi | ⊢ ( 𝑂 = 𝑇 → ( ( 𝐴 = 𝑇 ∧ 𝑂 = 𝐷 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 23 | 22 | eqcoms | ⊢ ( 𝑇 = 𝑂 → ( ( 𝐴 = 𝑇 ∧ 𝑂 = 𝐷 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 24 | 23 | adantl | ⊢ ( ( 𝐵 = 𝐶 ∧ 𝑇 = 𝑂 ) → ( ( 𝐴 = 𝑇 ∧ 𝑂 = 𝐷 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 25 | simpl | ⊢ ( ( 𝐴 = 𝑇 ∧ 𝑂 = 𝐷 ) → 𝐴 = 𝑇 ) | |
| 26 | simpr | ⊢ ( ( 𝐵 = 𝑂 ∧ 𝑇 = 𝐶 ) → 𝑇 = 𝐶 ) | |
| 27 | 25 26 | sylan9eqr | ⊢ ( ( ( 𝐵 = 𝑂 ∧ 𝑇 = 𝐶 ) ∧ ( 𝐴 = 𝑇 ∧ 𝑂 = 𝐷 ) ) → 𝐴 = 𝐶 ) |
| 28 | simpl | ⊢ ( ( 𝐵 = 𝑂 ∧ 𝑇 = 𝐶 ) → 𝐵 = 𝑂 ) | |
| 29 | simpr | ⊢ ( ( 𝐴 = 𝑇 ∧ 𝑂 = 𝐷 ) → 𝑂 = 𝐷 ) | |
| 30 | 28 29 | sylan9eq | ⊢ ( ( ( 𝐵 = 𝑂 ∧ 𝑇 = 𝐶 ) ∧ ( 𝐴 = 𝑇 ∧ 𝑂 = 𝐷 ) ) → 𝐵 = 𝐷 ) |
| 31 | 27 30 | jca | ⊢ ( ( ( 𝐵 = 𝑂 ∧ 𝑇 = 𝐶 ) ∧ ( 𝐴 = 𝑇 ∧ 𝑂 = 𝐷 ) ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
| 32 | 31 | ex | ⊢ ( ( 𝐵 = 𝑂 ∧ 𝑇 = 𝐶 ) → ( ( 𝐴 = 𝑇 ∧ 𝑂 = 𝐷 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 33 | 24 32 | jaoi | ⊢ ( ( ( 𝐵 = 𝐶 ∧ 𝑇 = 𝑂 ) ∨ ( 𝐵 = 𝑂 ∧ 𝑇 = 𝐶 ) ) → ( ( 𝐴 = 𝑇 ∧ 𝑂 = 𝐷 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 34 | 20 33 | sylbi | ⊢ ( { 𝐵 , 𝑇 } = { 𝐶 , 𝑂 } → ( ( 𝐴 = 𝑇 ∧ 𝑂 = 𝐷 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 35 | 34 | com12 | ⊢ ( ( 𝐴 = 𝑇 ∧ 𝑂 = 𝐷 ) → ( { 𝐵 , 𝑇 } = { 𝐶 , 𝑂 } → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 36 | 19 35 | jaoi | ⊢ ( ( ( 𝐴 = 𝐷 ∧ 𝑂 = 𝑇 ) ∨ ( 𝐴 = 𝑇 ∧ 𝑂 = 𝐷 ) ) → ( { 𝐵 , 𝑇 } = { 𝐶 , 𝑂 } → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 37 | 16 36 | sylbi | ⊢ ( { 𝐴 , 𝑂 } = { 𝐷 , 𝑇 } → ( { 𝐵 , 𝑇 } = { 𝐶 , 𝑂 } → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 38 | 37 | imp | ⊢ ( ( { 𝐴 , 𝑂 } = { 𝐷 , 𝑇 } ∧ { 𝐵 , 𝑇 } = { 𝐶 , 𝑂 } ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
| 39 | 15 38 | jaoi | ⊢ ( ( ( { 𝐴 , 𝑂 } = { 𝐶 , 𝑂 } ∧ { 𝐵 , 𝑇 } = { 𝐷 , 𝑇 } ) ∨ ( { 𝐴 , 𝑂 } = { 𝐷 , 𝑇 } ∧ { 𝐵 , 𝑇 } = { 𝐶 , 𝑂 } ) ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
| 40 | 12 39 | sylbi | ⊢ ( { { 𝐴 , 𝑂 } , { 𝐵 , 𝑇 } } = { { 𝐶 , 𝑂 } , { 𝐷 , 𝑇 } } → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
| 41 | preq1 | ⊢ ( 𝐴 = 𝐶 → { 𝐴 , 𝑂 } = { 𝐶 , 𝑂 } ) | |
| 42 | 41 | adantr | ⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → { 𝐴 , 𝑂 } = { 𝐶 , 𝑂 } ) |
| 43 | preq1 | ⊢ ( 𝐵 = 𝐷 → { 𝐵 , 𝑇 } = { 𝐷 , 𝑇 } ) | |
| 44 | 43 | adantl | ⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → { 𝐵 , 𝑇 } = { 𝐷 , 𝑇 } ) |
| 45 | 42 44 | preq12d | ⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → { { 𝐴 , 𝑂 } , { 𝐵 , 𝑇 } } = { { 𝐶 , 𝑂 } , { 𝐷 , 𝑇 } } ) |
| 46 | 40 45 | impbii | ⊢ ( { { 𝐴 , 𝑂 } , { 𝐵 , 𝑇 } } = { { 𝐶 , 𝑂 } , { 𝐷 , 𝑇 } } ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |