This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Justification theorem for the ordered pair definition of Felix Hausdorff in "Grundzüge der Mengenlehre" ("Basics of Set Theory"), 1914, p. 32: <. A , B >._H = { { A , O } , { B , T } } . Hausdorff used 1 and 2 instead of O and T , but actually, any two different fixed sets will do (e.g., O = (/) and T = { (/) } , see 0nep0 ). Furthermore, Hausdorff demanded that O and T are both different from A as well as B , which is actually not necessary if all involved classes exist as sets (i.e. are not proper classes), in contrast to opthhausdorff . See df-op for other ordered pair definitions. (Contributed by AV, 12-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opthhausdorff0.a | |- A e. _V |
|
| opthhausdorff0.b | |- B e. _V |
||
| opthhausdorff0.c | |- C e. _V |
||
| opthhausdorff0.d | |- D e. _V |
||
| opthhausdorff0.1 | |- O e. _V |
||
| opthhausdorff0.2 | |- T e. _V |
||
| opthhausdorff0.3 | |- O =/= T |
||
| Assertion | opthhausdorff0 | |- ( { { A , O } , { B , T } } = { { C , O } , { D , T } } <-> ( A = C /\ B = D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opthhausdorff0.a | |- A e. _V |
|
| 2 | opthhausdorff0.b | |- B e. _V |
|
| 3 | opthhausdorff0.c | |- C e. _V |
|
| 4 | opthhausdorff0.d | |- D e. _V |
|
| 5 | opthhausdorff0.1 | |- O e. _V |
|
| 6 | opthhausdorff0.2 | |- T e. _V |
|
| 7 | opthhausdorff0.3 | |- O =/= T |
|
| 8 | prex | |- { A , O } e. _V |
|
| 9 | prex | |- { B , T } e. _V |
|
| 10 | prex | |- { C , O } e. _V |
|
| 11 | prex | |- { D , T } e. _V |
|
| 12 | 8 9 10 11 | preq12b | |- ( { { A , O } , { B , T } } = { { C , O } , { D , T } } <-> ( ( { A , O } = { C , O } /\ { B , T } = { D , T } ) \/ ( { A , O } = { D , T } /\ { B , T } = { C , O } ) ) ) |
| 13 | 1 3 | preqr1 | |- ( { A , O } = { C , O } -> A = C ) |
| 14 | 2 4 | preqr1 | |- ( { B , T } = { D , T } -> B = D ) |
| 15 | 13 14 | anim12i | |- ( ( { A , O } = { C , O } /\ { B , T } = { D , T } ) -> ( A = C /\ B = D ) ) |
| 16 | 1 5 4 6 | preq12b | |- ( { A , O } = { D , T } <-> ( ( A = D /\ O = T ) \/ ( A = T /\ O = D ) ) ) |
| 17 | eqneqall | |- ( O = T -> ( O =/= T -> ( { B , T } = { C , O } -> ( A = C /\ B = D ) ) ) ) |
|
| 18 | 7 17 | mpi | |- ( O = T -> ( { B , T } = { C , O } -> ( A = C /\ B = D ) ) ) |
| 19 | 18 | adantl | |- ( ( A = D /\ O = T ) -> ( { B , T } = { C , O } -> ( A = C /\ B = D ) ) ) |
| 20 | 2 6 3 5 | preq12b | |- ( { B , T } = { C , O } <-> ( ( B = C /\ T = O ) \/ ( B = O /\ T = C ) ) ) |
| 21 | eqneqall | |- ( O = T -> ( O =/= T -> ( ( A = T /\ O = D ) -> ( A = C /\ B = D ) ) ) ) |
|
| 22 | 7 21 | mpi | |- ( O = T -> ( ( A = T /\ O = D ) -> ( A = C /\ B = D ) ) ) |
| 23 | 22 | eqcoms | |- ( T = O -> ( ( A = T /\ O = D ) -> ( A = C /\ B = D ) ) ) |
| 24 | 23 | adantl | |- ( ( B = C /\ T = O ) -> ( ( A = T /\ O = D ) -> ( A = C /\ B = D ) ) ) |
| 25 | simpl | |- ( ( A = T /\ O = D ) -> A = T ) |
|
| 26 | simpr | |- ( ( B = O /\ T = C ) -> T = C ) |
|
| 27 | 25 26 | sylan9eqr | |- ( ( ( B = O /\ T = C ) /\ ( A = T /\ O = D ) ) -> A = C ) |
| 28 | simpl | |- ( ( B = O /\ T = C ) -> B = O ) |
|
| 29 | simpr | |- ( ( A = T /\ O = D ) -> O = D ) |
|
| 30 | 28 29 | sylan9eq | |- ( ( ( B = O /\ T = C ) /\ ( A = T /\ O = D ) ) -> B = D ) |
| 31 | 27 30 | jca | |- ( ( ( B = O /\ T = C ) /\ ( A = T /\ O = D ) ) -> ( A = C /\ B = D ) ) |
| 32 | 31 | ex | |- ( ( B = O /\ T = C ) -> ( ( A = T /\ O = D ) -> ( A = C /\ B = D ) ) ) |
| 33 | 24 32 | jaoi | |- ( ( ( B = C /\ T = O ) \/ ( B = O /\ T = C ) ) -> ( ( A = T /\ O = D ) -> ( A = C /\ B = D ) ) ) |
| 34 | 20 33 | sylbi | |- ( { B , T } = { C , O } -> ( ( A = T /\ O = D ) -> ( A = C /\ B = D ) ) ) |
| 35 | 34 | com12 | |- ( ( A = T /\ O = D ) -> ( { B , T } = { C , O } -> ( A = C /\ B = D ) ) ) |
| 36 | 19 35 | jaoi | |- ( ( ( A = D /\ O = T ) \/ ( A = T /\ O = D ) ) -> ( { B , T } = { C , O } -> ( A = C /\ B = D ) ) ) |
| 37 | 16 36 | sylbi | |- ( { A , O } = { D , T } -> ( { B , T } = { C , O } -> ( A = C /\ B = D ) ) ) |
| 38 | 37 | imp | |- ( ( { A , O } = { D , T } /\ { B , T } = { C , O } ) -> ( A = C /\ B = D ) ) |
| 39 | 15 38 | jaoi | |- ( ( ( { A , O } = { C , O } /\ { B , T } = { D , T } ) \/ ( { A , O } = { D , T } /\ { B , T } = { C , O } ) ) -> ( A = C /\ B = D ) ) |
| 40 | 12 39 | sylbi | |- ( { { A , O } , { B , T } } = { { C , O } , { D , T } } -> ( A = C /\ B = D ) ) |
| 41 | preq1 | |- ( A = C -> { A , O } = { C , O } ) |
|
| 42 | 41 | adantr | |- ( ( A = C /\ B = D ) -> { A , O } = { C , O } ) |
| 43 | preq1 | |- ( B = D -> { B , T } = { D , T } ) |
|
| 44 | 43 | adantl | |- ( ( A = C /\ B = D ) -> { B , T } = { D , T } ) |
| 45 | 42 44 | preq12d | |- ( ( A = C /\ B = D ) -> { { A , O } , { B , T } } = { { C , O } , { D , T } } ) |
| 46 | 40 45 | impbii | |- ( { { A , O } , { B , T } } = { { C , O } , { D , T } } <-> ( A = C /\ B = D ) ) |