This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The operation generating opposite functors is injective. (Contributed by Zhi Wang, 17-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppff1.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| oppff1.p | ⊢ 𝑃 = ( oppCat ‘ 𝐷 ) | ||
| Assertion | oppff1 | ⊢ ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) : ( 𝐶 Func 𝐷 ) –1-1→ ( 𝑂 Func 𝑃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppff1.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 2 | oppff1.p | ⊢ 𝑃 = ( oppCat ‘ 𝐷 ) | |
| 3 | oppffn | ⊢ oppFunc Fn ( V × V ) | |
| 4 | relfunc | ⊢ Rel ( 𝐶 Func 𝐷 ) | |
| 5 | df-rel | ⊢ ( Rel ( 𝐶 Func 𝐷 ) ↔ ( 𝐶 Func 𝐷 ) ⊆ ( V × V ) ) | |
| 6 | 4 5 | mpbi | ⊢ ( 𝐶 Func 𝐷 ) ⊆ ( V × V ) |
| 7 | fnssres | ⊢ ( ( oppFunc Fn ( V × V ) ∧ ( 𝐶 Func 𝐷 ) ⊆ ( V × V ) ) → ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) Fn ( 𝐶 Func 𝐷 ) ) | |
| 8 | 3 6 7 | mp2an | ⊢ ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) Fn ( 𝐶 Func 𝐷 ) |
| 9 | fvres | ⊢ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) → ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ‘ 𝑓 ) = ( oppFunc ‘ 𝑓 ) ) | |
| 10 | id | ⊢ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) → 𝑓 ∈ ( 𝐶 Func 𝐷 ) ) | |
| 11 | 1 2 10 | oppfoppc2 | ⊢ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) → ( oppFunc ‘ 𝑓 ) ∈ ( 𝑂 Func 𝑃 ) ) |
| 12 | 9 11 | eqeltrd | ⊢ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) → ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ‘ 𝑓 ) ∈ ( 𝑂 Func 𝑃 ) ) |
| 13 | 12 | rgen | ⊢ ∀ 𝑓 ∈ ( 𝐶 Func 𝐷 ) ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ‘ 𝑓 ) ∈ ( 𝑂 Func 𝑃 ) |
| 14 | ffnfv | ⊢ ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) : ( 𝐶 Func 𝐷 ) ⟶ ( 𝑂 Func 𝑃 ) ↔ ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) Fn ( 𝐶 Func 𝐷 ) ∧ ∀ 𝑓 ∈ ( 𝐶 Func 𝐷 ) ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ‘ 𝑓 ) ∈ ( 𝑂 Func 𝑃 ) ) ) | |
| 15 | 8 13 14 | mpbir2an | ⊢ ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) : ( 𝐶 Func 𝐷 ) ⟶ ( 𝑂 Func 𝑃 ) |
| 16 | simpl | ⊢ ( ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) → 𝑓 ∈ ( 𝐶 Func 𝐷 ) ) | |
| 17 | 16 | fvresd | ⊢ ( ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) → ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ‘ 𝑓 ) = ( oppFunc ‘ 𝑓 ) ) |
| 18 | simpr | ⊢ ( ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) → 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) | |
| 19 | 18 | fvresd | ⊢ ( ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) → ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ‘ 𝑔 ) = ( oppFunc ‘ 𝑔 ) ) |
| 20 | 17 19 | eqeq12d | ⊢ ( ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) → ( ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ‘ 𝑓 ) = ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ‘ 𝑔 ) ↔ ( oppFunc ‘ 𝑓 ) = ( oppFunc ‘ 𝑔 ) ) ) |
| 21 | fveq2 | ⊢ ( ( oppFunc ‘ 𝑓 ) = ( oppFunc ‘ 𝑔 ) → ( oppFunc ‘ ( oppFunc ‘ 𝑓 ) ) = ( oppFunc ‘ ( oppFunc ‘ 𝑔 ) ) ) | |
| 22 | 1 2 16 | oppfoppc2 | ⊢ ( ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) → ( oppFunc ‘ 𝑓 ) ∈ ( 𝑂 Func 𝑃 ) ) |
| 23 | relfunc | ⊢ Rel ( 𝑂 Func 𝑃 ) | |
| 24 | eqid | ⊢ ( oppFunc ‘ 𝑓 ) = ( oppFunc ‘ 𝑓 ) | |
| 25 | 22 23 24 | 2oppf | ⊢ ( ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) → ( oppFunc ‘ ( oppFunc ‘ 𝑓 ) ) = 𝑓 ) |
| 26 | 1 2 18 | oppfoppc2 | ⊢ ( ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) → ( oppFunc ‘ 𝑔 ) ∈ ( 𝑂 Func 𝑃 ) ) |
| 27 | eqid | ⊢ ( oppFunc ‘ 𝑔 ) = ( oppFunc ‘ 𝑔 ) | |
| 28 | 26 23 27 | 2oppf | ⊢ ( ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) → ( oppFunc ‘ ( oppFunc ‘ 𝑔 ) ) = 𝑔 ) |
| 29 | 25 28 | eqeq12d | ⊢ ( ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) → ( ( oppFunc ‘ ( oppFunc ‘ 𝑓 ) ) = ( oppFunc ‘ ( oppFunc ‘ 𝑔 ) ) ↔ 𝑓 = 𝑔 ) ) |
| 30 | 21 29 | imbitrid | ⊢ ( ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) → ( ( oppFunc ‘ 𝑓 ) = ( oppFunc ‘ 𝑔 ) → 𝑓 = 𝑔 ) ) |
| 31 | 20 30 | sylbid | ⊢ ( ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) → ( ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ‘ 𝑓 ) = ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ‘ 𝑔 ) → 𝑓 = 𝑔 ) ) |
| 32 | 31 | rgen2 | ⊢ ∀ 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∀ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ( ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ‘ 𝑓 ) = ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ‘ 𝑔 ) → 𝑓 = 𝑔 ) |
| 33 | dff13 | ⊢ ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) : ( 𝐶 Func 𝐷 ) –1-1→ ( 𝑂 Func 𝑃 ) ↔ ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) : ( 𝐶 Func 𝐷 ) ⟶ ( 𝑂 Func 𝑃 ) ∧ ∀ 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∀ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ( ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ‘ 𝑓 ) = ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ‘ 𝑔 ) → 𝑓 = 𝑔 ) ) ) | |
| 34 | 15 32 33 | mpbir2an | ⊢ ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) : ( 𝐶 Func 𝐷 ) –1-1→ ( 𝑂 Func 𝑃 ) |