This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The opposite functor of an opposite functor is a functor on the original categories. (Contributed by Zhi Wang, 14-Nov-2025) The functor in opposite categories does not have to be an opposite functor. (Revised by Zhi Wang, 17-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcoppc2.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| funcoppc2.p | ⊢ 𝑃 = ( oppCat ‘ 𝐷 ) | ||
| funcoppc2.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | ||
| funcoppc2.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑊 ) | ||
| 2oppffunc.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑂 Func 𝑃 ) ) | ||
| Assertion | 2oppffunc | ⊢ ( 𝜑 → ( oppFunc ‘ 𝐹 ) ∈ ( 𝐶 Func 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcoppc2.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 2 | funcoppc2.p | ⊢ 𝑃 = ( oppCat ‘ 𝐷 ) | |
| 3 | funcoppc2.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 4 | funcoppc2.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑊 ) | |
| 5 | 2oppffunc.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑂 Func 𝑃 ) ) | |
| 6 | oppfval2 | ⊢ ( 𝐹 ∈ ( 𝑂 Func 𝑃 ) → ( oppFunc ‘ 𝐹 ) = 〈 ( 1st ‘ 𝐹 ) , tpos ( 2nd ‘ 𝐹 ) 〉 ) | |
| 7 | 5 6 | syl | ⊢ ( 𝜑 → ( oppFunc ‘ 𝐹 ) = 〈 ( 1st ‘ 𝐹 ) , tpos ( 2nd ‘ 𝐹 ) 〉 ) |
| 8 | 5 | func1st2nd | ⊢ ( 𝜑 → ( 1st ‘ 𝐹 ) ( 𝑂 Func 𝑃 ) ( 2nd ‘ 𝐹 ) ) |
| 9 | 1 2 3 4 8 | funcoppc2 | ⊢ ( 𝜑 → ( 1st ‘ 𝐹 ) ( 𝐶 Func 𝐷 ) tpos ( 2nd ‘ 𝐹 ) ) |
| 10 | df-br | ⊢ ( ( 1st ‘ 𝐹 ) ( 𝐶 Func 𝐷 ) tpos ( 2nd ‘ 𝐹 ) ↔ 〈 ( 1st ‘ 𝐹 ) , tpos ( 2nd ‘ 𝐹 ) 〉 ∈ ( 𝐶 Func 𝐷 ) ) | |
| 11 | 9 10 | sylib | ⊢ ( 𝜑 → 〈 ( 1st ‘ 𝐹 ) , tpos ( 2nd ‘ 𝐹 ) 〉 ∈ ( 𝐶 Func 𝐷 ) ) |
| 12 | 7 11 | eqeltrd | ⊢ ( 𝜑 → ( oppFunc ‘ 𝐹 ) ∈ ( 𝐶 Func 𝐷 ) ) |