This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for oppcmndc . Everything is true for two distinct elements in a singleton or an empty set (since it is impossible). Note that if this theorem and oppcendc are in -. x = y form, then both proofs should be one step shorter. (Contributed by Zhi Wang, 16-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oppcmndclem.1 | |- ( ph -> B = { A } ) |
|
| Assertion | oppcmndclem | |- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( X =/= Y -> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcmndclem.1 | |- ( ph -> B = { A } ) |
|
| 2 | df-ne | |- ( X =/= Y <-> -. X = Y ) |
|
| 3 | eqeq1 | |- ( x = X -> ( x = y <-> X = y ) ) |
|
| 4 | eqeq2 | |- ( y = Y -> ( X = y <-> X = Y ) ) |
|
| 5 | mosn | |- ( B = { A } -> E* x x e. B ) |
|
| 6 | 1 5 | syl | |- ( ph -> E* x x e. B ) |
| 7 | moel | |- ( E* x x e. B <-> A. x e. B A. y e. B x = y ) |
|
| 8 | 6 7 | sylib | |- ( ph -> A. x e. B A. y e. B x = y ) |
| 9 | 8 | adantr | |- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> A. x e. B A. y e. B x = y ) |
| 10 | simprl | |- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> X e. B ) |
|
| 11 | simprr | |- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> Y e. B ) |
|
| 12 | 3 4 9 10 11 | rspc2dv | |- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> X = Y ) |
| 13 | 12 | pm2.24d | |- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( -. X = Y -> ps ) ) |
| 14 | 2 13 | biimtrid | |- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( X =/= Y -> ps ) ) |