This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The opposite category of a category whose base set is a singleton or an empty set has the same base and hom-sets as the original category. (Contributed by Zhi Wang, 16-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppcendc.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| oppcendc.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| oppcmndc.x | ⊢ ( 𝜑 → 𝐵 = { 𝑋 } ) | ||
| Assertion | oppcmndc | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝑂 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcendc.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 2 | oppcendc.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | oppcmndc.x | ⊢ ( 𝜑 → 𝐵 = { 𝑋 } ) | |
| 4 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 5 | 3 | oppcmndclem | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ≠ 𝑦 → ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) = ∅ ) ) |
| 6 | 1 2 4 5 | oppcendc | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝑂 ) ) |