This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The opposite category of a category whose morphisms are all endomorphisms has the same base and hom-sets as the original category. (Contributed by Zhi Wang, 16-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppcendc.o | |- O = ( oppCat ` C ) |
|
| oppcendc.b | |- B = ( Base ` C ) |
||
| oppcendc.h | |- H = ( Hom ` C ) |
||
| oppcendc.1 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x =/= y -> ( x H y ) = (/) ) ) |
||
| Assertion | oppcendc | |- ( ph -> ( Homf ` C ) = ( Homf ` O ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcendc.o | |- O = ( oppCat ` C ) |
|
| 2 | oppcendc.b | |- B = ( Base ` C ) |
|
| 3 | oppcendc.h | |- H = ( Hom ` C ) |
|
| 4 | oppcendc.1 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x =/= y -> ( x H y ) = (/) ) ) |
|
| 5 | 4 | ralrimivva | |- ( ph -> A. x e. B A. y e. B ( x =/= y -> ( x H y ) = (/) ) ) |
| 6 | eqeq12 | |- ( ( x = p /\ y = q ) -> ( x = y <-> p = q ) ) |
|
| 7 | 6 | necon3bid | |- ( ( x = p /\ y = q ) -> ( x =/= y <-> p =/= q ) ) |
| 8 | oveq12 | |- ( ( x = p /\ y = q ) -> ( x H y ) = ( p H q ) ) |
|
| 9 | 8 | eqeq1d | |- ( ( x = p /\ y = q ) -> ( ( x H y ) = (/) <-> ( p H q ) = (/) ) ) |
| 10 | 7 9 | imbi12d | |- ( ( x = p /\ y = q ) -> ( ( x =/= y -> ( x H y ) = (/) ) <-> ( p =/= q -> ( p H q ) = (/) ) ) ) |
| 11 | 10 | rspc2gv | |- ( ( p e. B /\ q e. B ) -> ( A. x e. B A. y e. B ( x =/= y -> ( x H y ) = (/) ) -> ( p =/= q -> ( p H q ) = (/) ) ) ) |
| 12 | 5 11 | mpan9 | |- ( ( ph /\ ( p e. B /\ q e. B ) ) -> ( p =/= q -> ( p H q ) = (/) ) ) |
| 13 | simprr | |- ( ( ph /\ ( p e. B /\ q e. B ) ) -> q e. B ) |
|
| 14 | simprl | |- ( ( ph /\ ( p e. B /\ q e. B ) ) -> p e. B ) |
|
| 15 | 5 | adantr | |- ( ( ph /\ ( p e. B /\ q e. B ) ) -> A. x e. B A. y e. B ( x =/= y -> ( x H y ) = (/) ) ) |
| 16 | eqeq12 | |- ( ( x = q /\ y = p ) -> ( x = y <-> q = p ) ) |
|
| 17 | equcom | |- ( p = q <-> q = p ) |
|
| 18 | 16 17 | bitr4di | |- ( ( x = q /\ y = p ) -> ( x = y <-> p = q ) ) |
| 19 | 18 | necon3bid | |- ( ( x = q /\ y = p ) -> ( x =/= y <-> p =/= q ) ) |
| 20 | oveq12 | |- ( ( x = q /\ y = p ) -> ( x H y ) = ( q H p ) ) |
|
| 21 | 20 | eqeq1d | |- ( ( x = q /\ y = p ) -> ( ( x H y ) = (/) <-> ( q H p ) = (/) ) ) |
| 22 | 19 21 | imbi12d | |- ( ( x = q /\ y = p ) -> ( ( x =/= y -> ( x H y ) = (/) ) <-> ( p =/= q -> ( q H p ) = (/) ) ) ) |
| 23 | 22 | rspc2gv | |- ( ( q e. B /\ p e. B ) -> ( A. x e. B A. y e. B ( x =/= y -> ( x H y ) = (/) ) -> ( p =/= q -> ( q H p ) = (/) ) ) ) |
| 24 | 23 | imp | |- ( ( ( q e. B /\ p e. B ) /\ A. x e. B A. y e. B ( x =/= y -> ( x H y ) = (/) ) ) -> ( p =/= q -> ( q H p ) = (/) ) ) |
| 25 | 13 14 15 24 | syl21anc | |- ( ( ph /\ ( p e. B /\ q e. B ) ) -> ( p =/= q -> ( q H p ) = (/) ) ) |
| 26 | 12 25 | jcad | |- ( ( ph /\ ( p e. B /\ q e. B ) ) -> ( p =/= q -> ( ( p H q ) = (/) /\ ( q H p ) = (/) ) ) ) |
| 27 | nne | |- ( -. p =/= q <-> p = q ) |
|
| 28 | id | |- ( p = q -> p = q ) |
|
| 29 | equcomi | |- ( p = q -> q = p ) |
|
| 30 | 28 29 | oveq12d | |- ( p = q -> ( p H q ) = ( q H p ) ) |
| 31 | 27 30 | sylbi | |- ( -. p =/= q -> ( p H q ) = ( q H p ) ) |
| 32 | eqtr3 | |- ( ( ( p H q ) = (/) /\ ( q H p ) = (/) ) -> ( p H q ) = ( q H p ) ) |
|
| 33 | 31 32 | ja | |- ( ( p =/= q -> ( ( p H q ) = (/) /\ ( q H p ) = (/) ) ) -> ( p H q ) = ( q H p ) ) |
| 34 | 26 33 | syl | |- ( ( ph /\ ( p e. B /\ q e. B ) ) -> ( p H q ) = ( q H p ) ) |
| 35 | eqid | |- ( Homf ` C ) = ( Homf ` C ) |
|
| 36 | 35 2 3 14 13 | homfval | |- ( ( ph /\ ( p e. B /\ q e. B ) ) -> ( p ( Homf ` C ) q ) = ( p H q ) ) |
| 37 | 35 2 3 13 14 | homfval | |- ( ( ph /\ ( p e. B /\ q e. B ) ) -> ( q ( Homf ` C ) p ) = ( q H p ) ) |
| 38 | 34 36 37 | 3eqtr4d | |- ( ( ph /\ ( p e. B /\ q e. B ) ) -> ( p ( Homf ` C ) q ) = ( q ( Homf ` C ) p ) ) |
| 39 | 38 | ralrimivva | |- ( ph -> A. p e. B A. q e. B ( p ( Homf ` C ) q ) = ( q ( Homf ` C ) p ) ) |
| 40 | 35 2 | homffn | |- ( Homf ` C ) Fn ( B X. B ) |
| 41 | tpossym | |- ( ( Homf ` C ) Fn ( B X. B ) -> ( tpos ( Homf ` C ) = ( Homf ` C ) <-> A. p e. B A. q e. B ( p ( Homf ` C ) q ) = ( q ( Homf ` C ) p ) ) ) |
|
| 42 | 40 41 | ax-mp | |- ( tpos ( Homf ` C ) = ( Homf ` C ) <-> A. p e. B A. q e. B ( p ( Homf ` C ) q ) = ( q ( Homf ` C ) p ) ) |
| 43 | 39 42 | sylibr | |- ( ph -> tpos ( Homf ` C ) = ( Homf ` C ) ) |
| 44 | 1 35 | oppchomf | |- tpos ( Homf ` C ) = ( Homf ` O ) |
| 45 | 43 44 | eqtr3di | |- ( ph -> ( Homf ` C ) = ( Homf ` O ) ) |