This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any superset of an open set is a neighborhood of it. (Contributed by NM, 14-Feb-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | neips.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | opnssneib | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋 ) → ( 𝑆 ⊆ 𝑁 ↔ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neips.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | simplr | ⊢ ( ( ( 𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋 ) ∧ 𝑆 ⊆ 𝑁 ) → 𝑁 ⊆ 𝑋 ) | |
| 3 | sseq2 | ⊢ ( 𝑔 = 𝑆 → ( 𝑆 ⊆ 𝑔 ↔ 𝑆 ⊆ 𝑆 ) ) | |
| 4 | sseq1 | ⊢ ( 𝑔 = 𝑆 → ( 𝑔 ⊆ 𝑁 ↔ 𝑆 ⊆ 𝑁 ) ) | |
| 5 | 3 4 | anbi12d | ⊢ ( 𝑔 = 𝑆 → ( ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ↔ ( 𝑆 ⊆ 𝑆 ∧ 𝑆 ⊆ 𝑁 ) ) ) |
| 6 | ssid | ⊢ 𝑆 ⊆ 𝑆 | |
| 7 | 6 | biantrur | ⊢ ( 𝑆 ⊆ 𝑁 ↔ ( 𝑆 ⊆ 𝑆 ∧ 𝑆 ⊆ 𝑁 ) ) |
| 8 | 5 7 | bitr4di | ⊢ ( 𝑔 = 𝑆 → ( ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ↔ 𝑆 ⊆ 𝑁 ) ) |
| 9 | 8 | rspcev | ⊢ ( ( 𝑆 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑁 ) → ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ) |
| 10 | 9 | adantlr | ⊢ ( ( ( 𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋 ) ∧ 𝑆 ⊆ 𝑁 ) → ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ) |
| 11 | 2 10 | jca | ⊢ ( ( ( 𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋 ) ∧ 𝑆 ⊆ 𝑁 ) → ( 𝑁 ⊆ 𝑋 ∧ ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ) ) |
| 12 | 11 | ex | ⊢ ( ( 𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋 ) → ( 𝑆 ⊆ 𝑁 → ( 𝑁 ⊆ 𝑋 ∧ ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ) ) ) |
| 13 | 12 | 3adant1 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋 ) → ( 𝑆 ⊆ 𝑁 → ( 𝑁 ⊆ 𝑋 ∧ ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ) ) ) |
| 14 | 1 | eltopss | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ) → 𝑆 ⊆ 𝑋 ) |
| 15 | 1 | isnei | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ↔ ( 𝑁 ⊆ 𝑋 ∧ ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ) ) ) |
| 16 | 14 15 | syldan | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ) → ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ↔ ( 𝑁 ⊆ 𝑋 ∧ ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ) ) ) |
| 17 | 16 | 3adant3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋 ) → ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ↔ ( 𝑁 ⊆ 𝑋 ∧ ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ) ) ) |
| 18 | 13 17 | sylibrd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋 ) → ( 𝑆 ⊆ 𝑁 → 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 19 | ssnei | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑆 ⊆ 𝑁 ) | |
| 20 | 19 | ex | ⊢ ( 𝐽 ∈ Top → ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) → 𝑆 ⊆ 𝑁 ) ) |
| 21 | 20 | 3ad2ant1 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋 ) → ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) → 𝑆 ⊆ 𝑁 ) ) |
| 22 | 18 21 | impbid | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋 ) → ( 𝑆 ⊆ 𝑁 ↔ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) |