This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any superset of an open set is a neighborhood of it. (Contributed by NM, 14-Feb-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | neips.1 | |- X = U. J |
|
| Assertion | opnssneib | |- ( ( J e. Top /\ S e. J /\ N C_ X ) -> ( S C_ N <-> N e. ( ( nei ` J ) ` S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neips.1 | |- X = U. J |
|
| 2 | simplr | |- ( ( ( S e. J /\ N C_ X ) /\ S C_ N ) -> N C_ X ) |
|
| 3 | sseq2 | |- ( g = S -> ( S C_ g <-> S C_ S ) ) |
|
| 4 | sseq1 | |- ( g = S -> ( g C_ N <-> S C_ N ) ) |
|
| 5 | 3 4 | anbi12d | |- ( g = S -> ( ( S C_ g /\ g C_ N ) <-> ( S C_ S /\ S C_ N ) ) ) |
| 6 | ssid | |- S C_ S |
|
| 7 | 6 | biantrur | |- ( S C_ N <-> ( S C_ S /\ S C_ N ) ) |
| 8 | 5 7 | bitr4di | |- ( g = S -> ( ( S C_ g /\ g C_ N ) <-> S C_ N ) ) |
| 9 | 8 | rspcev | |- ( ( S e. J /\ S C_ N ) -> E. g e. J ( S C_ g /\ g C_ N ) ) |
| 10 | 9 | adantlr | |- ( ( ( S e. J /\ N C_ X ) /\ S C_ N ) -> E. g e. J ( S C_ g /\ g C_ N ) ) |
| 11 | 2 10 | jca | |- ( ( ( S e. J /\ N C_ X ) /\ S C_ N ) -> ( N C_ X /\ E. g e. J ( S C_ g /\ g C_ N ) ) ) |
| 12 | 11 | ex | |- ( ( S e. J /\ N C_ X ) -> ( S C_ N -> ( N C_ X /\ E. g e. J ( S C_ g /\ g C_ N ) ) ) ) |
| 13 | 12 | 3adant1 | |- ( ( J e. Top /\ S e. J /\ N C_ X ) -> ( S C_ N -> ( N C_ X /\ E. g e. J ( S C_ g /\ g C_ N ) ) ) ) |
| 14 | 1 | eltopss | |- ( ( J e. Top /\ S e. J ) -> S C_ X ) |
| 15 | 1 | isnei | |- ( ( J e. Top /\ S C_ X ) -> ( N e. ( ( nei ` J ) ` S ) <-> ( N C_ X /\ E. g e. J ( S C_ g /\ g C_ N ) ) ) ) |
| 16 | 14 15 | syldan | |- ( ( J e. Top /\ S e. J ) -> ( N e. ( ( nei ` J ) ` S ) <-> ( N C_ X /\ E. g e. J ( S C_ g /\ g C_ N ) ) ) ) |
| 17 | 16 | 3adant3 | |- ( ( J e. Top /\ S e. J /\ N C_ X ) -> ( N e. ( ( nei ` J ) ` S ) <-> ( N C_ X /\ E. g e. J ( S C_ g /\ g C_ N ) ) ) ) |
| 18 | 13 17 | sylibrd | |- ( ( J e. Top /\ S e. J /\ N C_ X ) -> ( S C_ N -> N e. ( ( nei ` J ) ` S ) ) ) |
| 19 | ssnei | |- ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) ) -> S C_ N ) |
|
| 20 | 19 | ex | |- ( J e. Top -> ( N e. ( ( nei ` J ) ` S ) -> S C_ N ) ) |
| 21 | 20 | 3ad2ant1 | |- ( ( J e. Top /\ S e. J /\ N C_ X ) -> ( N e. ( ( nei ` J ) ` S ) -> S C_ N ) ) |
| 22 | 18 21 | impbid | |- ( ( J e. Top /\ S e. J /\ N C_ X ) -> ( S C_ N <-> N e. ( ( nei ` J ) ` S ) ) ) |