This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An open set is a neighborhood of any of its subsets. (Contributed by FL, 2-Oct-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | neips.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | opnneissb | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑆 ⊆ 𝑁 ↔ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neips.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | eltopss | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ) → 𝑁 ⊆ 𝑋 ) |
| 3 | 2 | adantr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ) ∧ ( 𝑆 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑁 ) ) → 𝑁 ⊆ 𝑋 ) |
| 4 | ssid | ⊢ 𝑁 ⊆ 𝑁 | |
| 5 | sseq2 | ⊢ ( 𝑔 = 𝑁 → ( 𝑆 ⊆ 𝑔 ↔ 𝑆 ⊆ 𝑁 ) ) | |
| 6 | sseq1 | ⊢ ( 𝑔 = 𝑁 → ( 𝑔 ⊆ 𝑁 ↔ 𝑁 ⊆ 𝑁 ) ) | |
| 7 | 5 6 | anbi12d | ⊢ ( 𝑔 = 𝑁 → ( ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ↔ ( 𝑆 ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁 ) ) ) |
| 8 | 7 | rspcev | ⊢ ( ( 𝑁 ∈ 𝐽 ∧ ( 𝑆 ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁 ) ) → ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ) |
| 9 | 4 8 | mpanr2 | ⊢ ( ( 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑁 ) → ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ) |
| 10 | 9 | ad2ant2l | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ) ∧ ( 𝑆 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑁 ) ) → ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ) |
| 11 | 1 | isnei | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ↔ ( 𝑁 ⊆ 𝑋 ∧ ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ) ) ) |
| 12 | 11 | ad2ant2r | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ) ∧ ( 𝑆 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑁 ) ) → ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ↔ ( 𝑁 ⊆ 𝑋 ∧ ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ) ) ) |
| 13 | 3 10 12 | mpbir2and | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ) ∧ ( 𝑆 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑁 ) ) → 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 14 | 13 | exp43 | ⊢ ( 𝐽 ∈ Top → ( 𝑁 ∈ 𝐽 → ( 𝑆 ⊆ 𝑋 → ( 𝑆 ⊆ 𝑁 → 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) ) ) |
| 15 | 14 | 3imp | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑆 ⊆ 𝑁 → 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 16 | ssnei | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑆 ⊆ 𝑁 ) | |
| 17 | 16 | ex | ⊢ ( 𝐽 ∈ Top → ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) → 𝑆 ⊆ 𝑁 ) ) |
| 18 | 17 | 3ad2ant1 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) → 𝑆 ⊆ 𝑁 ) ) |
| 19 | 15 18 | impbid | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑆 ⊆ 𝑁 ↔ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) |