This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An open set is a neighborhood of any of its subsets. (Contributed by FL, 2-Oct-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | neips.1 | |- X = U. J |
|
| Assertion | opnneissb | |- ( ( J e. Top /\ N e. J /\ S C_ X ) -> ( S C_ N <-> N e. ( ( nei ` J ) ` S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neips.1 | |- X = U. J |
|
| 2 | 1 | eltopss | |- ( ( J e. Top /\ N e. J ) -> N C_ X ) |
| 3 | 2 | adantr | |- ( ( ( J e. Top /\ N e. J ) /\ ( S C_ X /\ S C_ N ) ) -> N C_ X ) |
| 4 | ssid | |- N C_ N |
|
| 5 | sseq2 | |- ( g = N -> ( S C_ g <-> S C_ N ) ) |
|
| 6 | sseq1 | |- ( g = N -> ( g C_ N <-> N C_ N ) ) |
|
| 7 | 5 6 | anbi12d | |- ( g = N -> ( ( S C_ g /\ g C_ N ) <-> ( S C_ N /\ N C_ N ) ) ) |
| 8 | 7 | rspcev | |- ( ( N e. J /\ ( S C_ N /\ N C_ N ) ) -> E. g e. J ( S C_ g /\ g C_ N ) ) |
| 9 | 4 8 | mpanr2 | |- ( ( N e. J /\ S C_ N ) -> E. g e. J ( S C_ g /\ g C_ N ) ) |
| 10 | 9 | ad2ant2l | |- ( ( ( J e. Top /\ N e. J ) /\ ( S C_ X /\ S C_ N ) ) -> E. g e. J ( S C_ g /\ g C_ N ) ) |
| 11 | 1 | isnei | |- ( ( J e. Top /\ S C_ X ) -> ( N e. ( ( nei ` J ) ` S ) <-> ( N C_ X /\ E. g e. J ( S C_ g /\ g C_ N ) ) ) ) |
| 12 | 11 | ad2ant2r | |- ( ( ( J e. Top /\ N e. J ) /\ ( S C_ X /\ S C_ N ) ) -> ( N e. ( ( nei ` J ) ` S ) <-> ( N C_ X /\ E. g e. J ( S C_ g /\ g C_ N ) ) ) ) |
| 13 | 3 10 12 | mpbir2and | |- ( ( ( J e. Top /\ N e. J ) /\ ( S C_ X /\ S C_ N ) ) -> N e. ( ( nei ` J ) ` S ) ) |
| 14 | 13 | exp43 | |- ( J e. Top -> ( N e. J -> ( S C_ X -> ( S C_ N -> N e. ( ( nei ` J ) ` S ) ) ) ) ) |
| 15 | 14 | 3imp | |- ( ( J e. Top /\ N e. J /\ S C_ X ) -> ( S C_ N -> N e. ( ( nei ` J ) ` S ) ) ) |
| 16 | ssnei | |- ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) ) -> S C_ N ) |
|
| 17 | 16 | ex | |- ( J e. Top -> ( N e. ( ( nei ` J ) ` S ) -> S C_ N ) ) |
| 18 | 17 | 3ad2ant1 | |- ( ( J e. Top /\ N e. J /\ S C_ X ) -> ( N e. ( ( nei ` J ) ` S ) -> S C_ N ) ) |
| 19 | 15 18 | impbid | |- ( ( J e. Top /\ N e. J /\ S C_ X ) -> ( S C_ N <-> N e. ( ( nei ` J ) ` S ) ) ) |