This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For any neighborhood N of S , there is a neighborhood x of S such that N is a neighborhood of all subsets of x . Generalization to subsets of Property V_iv of BourbakiTop1 p. I.3. (Contributed by FL, 2-Oct-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | neissex | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) → ∃ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∀ 𝑦 ( 𝑦 ⊆ 𝑥 → 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neii2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) → ∃ 𝑥 ∈ 𝐽 ( 𝑆 ⊆ 𝑥 ∧ 𝑥 ⊆ 𝑁 ) ) | |
| 2 | opnneiss | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑥 ) → 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) | |
| 3 | 2 | 3expb | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑥 ) ) → 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 4 | 3 | adantrrr | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ 𝐽 ∧ ( 𝑆 ⊆ 𝑥 ∧ 𝑥 ⊆ 𝑁 ) ) ) → 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 5 | 4 | adantlr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ 𝐽 ∧ ( 𝑆 ⊆ 𝑥 ∧ 𝑥 ⊆ 𝑁 ) ) ) → 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 6 | simplll | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝑁 ) ) ∧ 𝑦 ⊆ 𝑥 ) → 𝐽 ∈ Top ) | |
| 7 | simpll | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝐽 ) → 𝐽 ∈ Top ) | |
| 8 | simpr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝐽 ) → 𝑥 ∈ 𝐽 ) | |
| 9 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 10 | 9 | neii1 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑁 ⊆ ∪ 𝐽 ) |
| 11 | 10 | adantr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝐽 ) → 𝑁 ⊆ ∪ 𝐽 ) |
| 12 | 9 | opnssneib | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ∧ 𝑁 ⊆ ∪ 𝐽 ) → ( 𝑥 ⊆ 𝑁 ↔ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑥 ) ) ) |
| 13 | 7 8 11 12 | syl3anc | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝐽 ) → ( 𝑥 ⊆ 𝑁 ↔ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑥 ) ) ) |
| 14 | 13 | biimpa | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑥 ⊆ 𝑁 ) → 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑥 ) ) |
| 15 | 14 | anasss | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝑁 ) ) → 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑥 ) ) |
| 16 | 15 | adantr | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝑁 ) ) ∧ 𝑦 ⊆ 𝑥 ) → 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑥 ) ) |
| 17 | simpr | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝑁 ) ) ∧ 𝑦 ⊆ 𝑥 ) → 𝑦 ⊆ 𝑥 ) | |
| 18 | neiss | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑥 ) ∧ 𝑦 ⊆ 𝑥 ) → 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑦 ) ) | |
| 19 | 6 16 17 18 | syl3anc | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝑁 ) ) ∧ 𝑦 ⊆ 𝑥 ) → 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑦 ) ) |
| 20 | 19 | ex | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝑁 ) ) → ( 𝑦 ⊆ 𝑥 → 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑦 ) ) ) |
| 21 | 20 | adantrrl | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ 𝐽 ∧ ( 𝑆 ⊆ 𝑥 ∧ 𝑥 ⊆ 𝑁 ) ) ) → ( 𝑦 ⊆ 𝑥 → 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑦 ) ) ) |
| 22 | 21 | alrimiv | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ 𝐽 ∧ ( 𝑆 ⊆ 𝑥 ∧ 𝑥 ⊆ 𝑁 ) ) ) → ∀ 𝑦 ( 𝑦 ⊆ 𝑥 → 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑦 ) ) ) |
| 23 | 1 5 22 | reximssdv | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) → ∃ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∀ 𝑦 ( 𝑦 ⊆ 𝑥 → 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑦 ) ) ) |