This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The collection of open supersets of a nonempty set in a topology is a neighborhoods of the set, one of the motivations for the filter concept. (Contributed by Jeff Hankins, 2-Sep-2009) (Revised by Mario Carneiro, 7-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | opnfbas.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | opnfbas | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ) → { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } ∈ ( fBas ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opnfbas.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | ssrab2 | ⊢ { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } ⊆ 𝐽 | |
| 3 | 1 | eqimss2i | ⊢ ∪ 𝐽 ⊆ 𝑋 |
| 4 | sspwuni | ⊢ ( 𝐽 ⊆ 𝒫 𝑋 ↔ ∪ 𝐽 ⊆ 𝑋 ) | |
| 5 | 3 4 | mpbir | ⊢ 𝐽 ⊆ 𝒫 𝑋 |
| 6 | 2 5 | sstri | ⊢ { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } ⊆ 𝒫 𝑋 |
| 7 | 6 | a1i | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ) → { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } ⊆ 𝒫 𝑋 ) |
| 8 | 1 | topopn | ⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
| 9 | 8 | anim1i | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑋 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑋 ) ) |
| 10 | 9 | 3adant3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ) → ( 𝑋 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑋 ) ) |
| 11 | sseq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝑆 ⊆ 𝑥 ↔ 𝑆 ⊆ 𝑋 ) ) | |
| 12 | 11 | elrab | ⊢ ( 𝑋 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } ↔ ( 𝑋 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑋 ) ) |
| 13 | 10 12 | sylibr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ) → 𝑋 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } ) |
| 14 | 13 | ne0d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ) → { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } ≠ ∅ ) |
| 15 | ss0 | ⊢ ( 𝑆 ⊆ ∅ → 𝑆 = ∅ ) | |
| 16 | 15 | necon3ai | ⊢ ( 𝑆 ≠ ∅ → ¬ 𝑆 ⊆ ∅ ) |
| 17 | 16 | 3ad2ant3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ) → ¬ 𝑆 ⊆ ∅ ) |
| 18 | 17 | intnand | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ) → ¬ ( ∅ ∈ 𝐽 ∧ 𝑆 ⊆ ∅ ) ) |
| 19 | df-nel | ⊢ ( ∅ ∉ { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } ↔ ¬ ∅ ∈ { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } ) | |
| 20 | sseq2 | ⊢ ( 𝑥 = ∅ → ( 𝑆 ⊆ 𝑥 ↔ 𝑆 ⊆ ∅ ) ) | |
| 21 | 20 | elrab | ⊢ ( ∅ ∈ { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } ↔ ( ∅ ∈ 𝐽 ∧ 𝑆 ⊆ ∅ ) ) |
| 22 | 21 | notbii | ⊢ ( ¬ ∅ ∈ { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } ↔ ¬ ( ∅ ∈ 𝐽 ∧ 𝑆 ⊆ ∅ ) ) |
| 23 | 19 22 | bitr2i | ⊢ ( ¬ ( ∅ ∈ 𝐽 ∧ 𝑆 ⊆ ∅ ) ↔ ∅ ∉ { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } ) |
| 24 | 18 23 | sylib | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ) → ∅ ∉ { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } ) |
| 25 | sseq2 | ⊢ ( 𝑥 = 𝑟 → ( 𝑆 ⊆ 𝑥 ↔ 𝑆 ⊆ 𝑟 ) ) | |
| 26 | 25 | elrab | ⊢ ( 𝑟 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } ↔ ( 𝑟 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑟 ) ) |
| 27 | sseq2 | ⊢ ( 𝑥 = 𝑠 → ( 𝑆 ⊆ 𝑥 ↔ 𝑆 ⊆ 𝑠 ) ) | |
| 28 | 27 | elrab | ⊢ ( 𝑠 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } ↔ ( 𝑠 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑠 ) ) |
| 29 | 26 28 | anbi12i | ⊢ ( ( 𝑟 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } ∧ 𝑠 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } ) ↔ ( ( 𝑟 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑟 ) ∧ ( 𝑠 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑠 ) ) ) |
| 30 | simpl | ⊢ ( ( 𝐽 ∈ Top ∧ ( ( 𝑟 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑟 ) ∧ ( 𝑠 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑠 ) ) ) → 𝐽 ∈ Top ) | |
| 31 | simprll | ⊢ ( ( 𝐽 ∈ Top ∧ ( ( 𝑟 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑟 ) ∧ ( 𝑠 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑠 ) ) ) → 𝑟 ∈ 𝐽 ) | |
| 32 | simprrl | ⊢ ( ( 𝐽 ∈ Top ∧ ( ( 𝑟 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑟 ) ∧ ( 𝑠 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑠 ) ) ) → 𝑠 ∈ 𝐽 ) | |
| 33 | inopn | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽 ) → ( 𝑟 ∩ 𝑠 ) ∈ 𝐽 ) | |
| 34 | 30 31 32 33 | syl3anc | ⊢ ( ( 𝐽 ∈ Top ∧ ( ( 𝑟 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑟 ) ∧ ( 𝑠 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑠 ) ) ) → ( 𝑟 ∩ 𝑠 ) ∈ 𝐽 ) |
| 35 | ssin | ⊢ ( ( 𝑆 ⊆ 𝑟 ∧ 𝑆 ⊆ 𝑠 ) ↔ 𝑆 ⊆ ( 𝑟 ∩ 𝑠 ) ) | |
| 36 | 35 | biimpi | ⊢ ( ( 𝑆 ⊆ 𝑟 ∧ 𝑆 ⊆ 𝑠 ) → 𝑆 ⊆ ( 𝑟 ∩ 𝑠 ) ) |
| 37 | 36 | ad2ant2l | ⊢ ( ( ( 𝑟 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑟 ) ∧ ( 𝑠 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑠 ) ) → 𝑆 ⊆ ( 𝑟 ∩ 𝑠 ) ) |
| 38 | 37 | adantl | ⊢ ( ( 𝐽 ∈ Top ∧ ( ( 𝑟 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑟 ) ∧ ( 𝑠 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑠 ) ) ) → 𝑆 ⊆ ( 𝑟 ∩ 𝑠 ) ) |
| 39 | 34 38 | jca | ⊢ ( ( 𝐽 ∈ Top ∧ ( ( 𝑟 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑟 ) ∧ ( 𝑠 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑠 ) ) ) → ( ( 𝑟 ∩ 𝑠 ) ∈ 𝐽 ∧ 𝑆 ⊆ ( 𝑟 ∩ 𝑠 ) ) ) |
| 40 | 39 | 3ad2antl1 | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ) ∧ ( ( 𝑟 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑟 ) ∧ ( 𝑠 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑠 ) ) ) → ( ( 𝑟 ∩ 𝑠 ) ∈ 𝐽 ∧ 𝑆 ⊆ ( 𝑟 ∩ 𝑠 ) ) ) |
| 41 | sseq2 | ⊢ ( 𝑥 = ( 𝑟 ∩ 𝑠 ) → ( 𝑆 ⊆ 𝑥 ↔ 𝑆 ⊆ ( 𝑟 ∩ 𝑠 ) ) ) | |
| 42 | 41 | elrab | ⊢ ( ( 𝑟 ∩ 𝑠 ) ∈ { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } ↔ ( ( 𝑟 ∩ 𝑠 ) ∈ 𝐽 ∧ 𝑆 ⊆ ( 𝑟 ∩ 𝑠 ) ) ) |
| 43 | 40 42 | sylibr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ) ∧ ( ( 𝑟 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑟 ) ∧ ( 𝑠 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑠 ) ) ) → ( 𝑟 ∩ 𝑠 ) ∈ { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } ) |
| 44 | ssid | ⊢ ( 𝑟 ∩ 𝑠 ) ⊆ ( 𝑟 ∩ 𝑠 ) | |
| 45 | sseq1 | ⊢ ( 𝑡 = ( 𝑟 ∩ 𝑠 ) → ( 𝑡 ⊆ ( 𝑟 ∩ 𝑠 ) ↔ ( 𝑟 ∩ 𝑠 ) ⊆ ( 𝑟 ∩ 𝑠 ) ) ) | |
| 46 | 45 | rspcev | ⊢ ( ( ( 𝑟 ∩ 𝑠 ) ∈ { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } ∧ ( 𝑟 ∩ 𝑠 ) ⊆ ( 𝑟 ∩ 𝑠 ) ) → ∃ 𝑡 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } 𝑡 ⊆ ( 𝑟 ∩ 𝑠 ) ) |
| 47 | 43 44 46 | sylancl | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ) ∧ ( ( 𝑟 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑟 ) ∧ ( 𝑠 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑠 ) ) ) → ∃ 𝑡 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } 𝑡 ⊆ ( 𝑟 ∩ 𝑠 ) ) |
| 48 | 47 | ex | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ) → ( ( ( 𝑟 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑟 ) ∧ ( 𝑠 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑠 ) ) → ∃ 𝑡 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } 𝑡 ⊆ ( 𝑟 ∩ 𝑠 ) ) ) |
| 49 | 29 48 | biimtrid | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ) → ( ( 𝑟 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } ∧ 𝑠 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } ) → ∃ 𝑡 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } 𝑡 ⊆ ( 𝑟 ∩ 𝑠 ) ) ) |
| 50 | 49 | ralrimivv | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ) → ∀ 𝑟 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } ∀ 𝑠 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } ∃ 𝑡 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } 𝑡 ⊆ ( 𝑟 ∩ 𝑠 ) ) |
| 51 | 14 24 50 | 3jca | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ) → ( { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } ≠ ∅ ∧ ∅ ∉ { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } ∧ ∀ 𝑟 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } ∀ 𝑠 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } ∃ 𝑡 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } 𝑡 ⊆ ( 𝑟 ∩ 𝑠 ) ) ) |
| 52 | isfbas2 | ⊢ ( 𝑋 ∈ 𝐽 → ( { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } ∈ ( fBas ‘ 𝑋 ) ↔ ( { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } ⊆ 𝒫 𝑋 ∧ ( { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } ≠ ∅ ∧ ∅ ∉ { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } ∧ ∀ 𝑟 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } ∀ 𝑠 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } ∃ 𝑡 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } 𝑡 ⊆ ( 𝑟 ∩ 𝑠 ) ) ) ) ) | |
| 53 | 8 52 | syl | ⊢ ( 𝐽 ∈ Top → ( { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } ∈ ( fBas ‘ 𝑋 ) ↔ ( { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } ⊆ 𝒫 𝑋 ∧ ( { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } ≠ ∅ ∧ ∅ ∉ { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } ∧ ∀ 𝑟 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } ∀ 𝑠 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } ∃ 𝑡 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } 𝑡 ⊆ ( 𝑟 ∩ 𝑠 ) ) ) ) ) |
| 54 | 53 | 3ad2ant1 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ) → ( { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } ∈ ( fBas ‘ 𝑋 ) ↔ ( { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } ⊆ 𝒫 𝑋 ∧ ( { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } ≠ ∅ ∧ ∅ ∉ { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } ∧ ∀ 𝑟 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } ∀ 𝑠 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } ∃ 𝑡 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } 𝑡 ⊆ ( 𝑟 ∩ 𝑠 ) ) ) ) ) |
| 55 | 7 51 54 | mpbir2and | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ) → { 𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥 } ∈ ( fBas ‘ 𝑋 ) ) |