This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The collection of open supersets of a nonempty set in a topology is a neighborhoods of the set, one of the motivations for the filter concept. (Contributed by Jeff Hankins, 2-Sep-2009) (Revised by Mario Carneiro, 7-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | opnfbas.1 | |- X = U. J |
|
| Assertion | opnfbas | |- ( ( J e. Top /\ S C_ X /\ S =/= (/) ) -> { x e. J | S C_ x } e. ( fBas ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opnfbas.1 | |- X = U. J |
|
| 2 | ssrab2 | |- { x e. J | S C_ x } C_ J |
|
| 3 | 1 | eqimss2i | |- U. J C_ X |
| 4 | sspwuni | |- ( J C_ ~P X <-> U. J C_ X ) |
|
| 5 | 3 4 | mpbir | |- J C_ ~P X |
| 6 | 2 5 | sstri | |- { x e. J | S C_ x } C_ ~P X |
| 7 | 6 | a1i | |- ( ( J e. Top /\ S C_ X /\ S =/= (/) ) -> { x e. J | S C_ x } C_ ~P X ) |
| 8 | 1 | topopn | |- ( J e. Top -> X e. J ) |
| 9 | 8 | anim1i | |- ( ( J e. Top /\ S C_ X ) -> ( X e. J /\ S C_ X ) ) |
| 10 | 9 | 3adant3 | |- ( ( J e. Top /\ S C_ X /\ S =/= (/) ) -> ( X e. J /\ S C_ X ) ) |
| 11 | sseq2 | |- ( x = X -> ( S C_ x <-> S C_ X ) ) |
|
| 12 | 11 | elrab | |- ( X e. { x e. J | S C_ x } <-> ( X e. J /\ S C_ X ) ) |
| 13 | 10 12 | sylibr | |- ( ( J e. Top /\ S C_ X /\ S =/= (/) ) -> X e. { x e. J | S C_ x } ) |
| 14 | 13 | ne0d | |- ( ( J e. Top /\ S C_ X /\ S =/= (/) ) -> { x e. J | S C_ x } =/= (/) ) |
| 15 | ss0 | |- ( S C_ (/) -> S = (/) ) |
|
| 16 | 15 | necon3ai | |- ( S =/= (/) -> -. S C_ (/) ) |
| 17 | 16 | 3ad2ant3 | |- ( ( J e. Top /\ S C_ X /\ S =/= (/) ) -> -. S C_ (/) ) |
| 18 | 17 | intnand | |- ( ( J e. Top /\ S C_ X /\ S =/= (/) ) -> -. ( (/) e. J /\ S C_ (/) ) ) |
| 19 | df-nel | |- ( (/) e/ { x e. J | S C_ x } <-> -. (/) e. { x e. J | S C_ x } ) |
|
| 20 | sseq2 | |- ( x = (/) -> ( S C_ x <-> S C_ (/) ) ) |
|
| 21 | 20 | elrab | |- ( (/) e. { x e. J | S C_ x } <-> ( (/) e. J /\ S C_ (/) ) ) |
| 22 | 21 | notbii | |- ( -. (/) e. { x e. J | S C_ x } <-> -. ( (/) e. J /\ S C_ (/) ) ) |
| 23 | 19 22 | bitr2i | |- ( -. ( (/) e. J /\ S C_ (/) ) <-> (/) e/ { x e. J | S C_ x } ) |
| 24 | 18 23 | sylib | |- ( ( J e. Top /\ S C_ X /\ S =/= (/) ) -> (/) e/ { x e. J | S C_ x } ) |
| 25 | sseq2 | |- ( x = r -> ( S C_ x <-> S C_ r ) ) |
|
| 26 | 25 | elrab | |- ( r e. { x e. J | S C_ x } <-> ( r e. J /\ S C_ r ) ) |
| 27 | sseq2 | |- ( x = s -> ( S C_ x <-> S C_ s ) ) |
|
| 28 | 27 | elrab | |- ( s e. { x e. J | S C_ x } <-> ( s e. J /\ S C_ s ) ) |
| 29 | 26 28 | anbi12i | |- ( ( r e. { x e. J | S C_ x } /\ s e. { x e. J | S C_ x } ) <-> ( ( r e. J /\ S C_ r ) /\ ( s e. J /\ S C_ s ) ) ) |
| 30 | simpl | |- ( ( J e. Top /\ ( ( r e. J /\ S C_ r ) /\ ( s e. J /\ S C_ s ) ) ) -> J e. Top ) |
|
| 31 | simprll | |- ( ( J e. Top /\ ( ( r e. J /\ S C_ r ) /\ ( s e. J /\ S C_ s ) ) ) -> r e. J ) |
|
| 32 | simprrl | |- ( ( J e. Top /\ ( ( r e. J /\ S C_ r ) /\ ( s e. J /\ S C_ s ) ) ) -> s e. J ) |
|
| 33 | inopn | |- ( ( J e. Top /\ r e. J /\ s e. J ) -> ( r i^i s ) e. J ) |
|
| 34 | 30 31 32 33 | syl3anc | |- ( ( J e. Top /\ ( ( r e. J /\ S C_ r ) /\ ( s e. J /\ S C_ s ) ) ) -> ( r i^i s ) e. J ) |
| 35 | ssin | |- ( ( S C_ r /\ S C_ s ) <-> S C_ ( r i^i s ) ) |
|
| 36 | 35 | biimpi | |- ( ( S C_ r /\ S C_ s ) -> S C_ ( r i^i s ) ) |
| 37 | 36 | ad2ant2l | |- ( ( ( r e. J /\ S C_ r ) /\ ( s e. J /\ S C_ s ) ) -> S C_ ( r i^i s ) ) |
| 38 | 37 | adantl | |- ( ( J e. Top /\ ( ( r e. J /\ S C_ r ) /\ ( s e. J /\ S C_ s ) ) ) -> S C_ ( r i^i s ) ) |
| 39 | 34 38 | jca | |- ( ( J e. Top /\ ( ( r e. J /\ S C_ r ) /\ ( s e. J /\ S C_ s ) ) ) -> ( ( r i^i s ) e. J /\ S C_ ( r i^i s ) ) ) |
| 40 | 39 | 3ad2antl1 | |- ( ( ( J e. Top /\ S C_ X /\ S =/= (/) ) /\ ( ( r e. J /\ S C_ r ) /\ ( s e. J /\ S C_ s ) ) ) -> ( ( r i^i s ) e. J /\ S C_ ( r i^i s ) ) ) |
| 41 | sseq2 | |- ( x = ( r i^i s ) -> ( S C_ x <-> S C_ ( r i^i s ) ) ) |
|
| 42 | 41 | elrab | |- ( ( r i^i s ) e. { x e. J | S C_ x } <-> ( ( r i^i s ) e. J /\ S C_ ( r i^i s ) ) ) |
| 43 | 40 42 | sylibr | |- ( ( ( J e. Top /\ S C_ X /\ S =/= (/) ) /\ ( ( r e. J /\ S C_ r ) /\ ( s e. J /\ S C_ s ) ) ) -> ( r i^i s ) e. { x e. J | S C_ x } ) |
| 44 | ssid | |- ( r i^i s ) C_ ( r i^i s ) |
|
| 45 | sseq1 | |- ( t = ( r i^i s ) -> ( t C_ ( r i^i s ) <-> ( r i^i s ) C_ ( r i^i s ) ) ) |
|
| 46 | 45 | rspcev | |- ( ( ( r i^i s ) e. { x e. J | S C_ x } /\ ( r i^i s ) C_ ( r i^i s ) ) -> E. t e. { x e. J | S C_ x } t C_ ( r i^i s ) ) |
| 47 | 43 44 46 | sylancl | |- ( ( ( J e. Top /\ S C_ X /\ S =/= (/) ) /\ ( ( r e. J /\ S C_ r ) /\ ( s e. J /\ S C_ s ) ) ) -> E. t e. { x e. J | S C_ x } t C_ ( r i^i s ) ) |
| 48 | 47 | ex | |- ( ( J e. Top /\ S C_ X /\ S =/= (/) ) -> ( ( ( r e. J /\ S C_ r ) /\ ( s e. J /\ S C_ s ) ) -> E. t e. { x e. J | S C_ x } t C_ ( r i^i s ) ) ) |
| 49 | 29 48 | biimtrid | |- ( ( J e. Top /\ S C_ X /\ S =/= (/) ) -> ( ( r e. { x e. J | S C_ x } /\ s e. { x e. J | S C_ x } ) -> E. t e. { x e. J | S C_ x } t C_ ( r i^i s ) ) ) |
| 50 | 49 | ralrimivv | |- ( ( J e. Top /\ S C_ X /\ S =/= (/) ) -> A. r e. { x e. J | S C_ x } A. s e. { x e. J | S C_ x } E. t e. { x e. J | S C_ x } t C_ ( r i^i s ) ) |
| 51 | 14 24 50 | 3jca | |- ( ( J e. Top /\ S C_ X /\ S =/= (/) ) -> ( { x e. J | S C_ x } =/= (/) /\ (/) e/ { x e. J | S C_ x } /\ A. r e. { x e. J | S C_ x } A. s e. { x e. J | S C_ x } E. t e. { x e. J | S C_ x } t C_ ( r i^i s ) ) ) |
| 52 | isfbas2 | |- ( X e. J -> ( { x e. J | S C_ x } e. ( fBas ` X ) <-> ( { x e. J | S C_ x } C_ ~P X /\ ( { x e. J | S C_ x } =/= (/) /\ (/) e/ { x e. J | S C_ x } /\ A. r e. { x e. J | S C_ x } A. s e. { x e. J | S C_ x } E. t e. { x e. J | S C_ x } t C_ ( r i^i s ) ) ) ) ) |
|
| 53 | 8 52 | syl | |- ( J e. Top -> ( { x e. J | S C_ x } e. ( fBas ` X ) <-> ( { x e. J | S C_ x } C_ ~P X /\ ( { x e. J | S C_ x } =/= (/) /\ (/) e/ { x e. J | S C_ x } /\ A. r e. { x e. J | S C_ x } A. s e. { x e. J | S C_ x } E. t e. { x e. J | S C_ x } t C_ ( r i^i s ) ) ) ) ) |
| 54 | 53 | 3ad2ant1 | |- ( ( J e. Top /\ S C_ X /\ S =/= (/) ) -> ( { x e. J | S C_ x } e. ( fBas ` X ) <-> ( { x e. J | S C_ x } C_ ~P X /\ ( { x e. J | S C_ x } =/= (/) /\ (/) e/ { x e. J | S C_ x } /\ A. r e. { x e. J | S C_ x } A. s e. { x e. J | S C_ x } E. t e. { x e. J | S C_ x } t C_ ( r i^i s ) ) ) ) ) |
| 55 | 7 51 54 | mpbir2and | |- ( ( J e. Top /\ S C_ X /\ S =/= (/) ) -> { x e. J | S C_ x } e. ( fBas ` X ) ) |