This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence for an ordered pair equal to an unordered pair. (Contributed by NM, 3-Jun-2008) (Avoid depending on this detail.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opeqpr.1 | ⊢ 𝐴 ∈ V | |
| opeqpr.2 | ⊢ 𝐵 ∈ V | ||
| opeqpr.3 | ⊢ 𝐶 ∈ V | ||
| opeqpr.4 | ⊢ 𝐷 ∈ V | ||
| Assertion | opeqpr | ⊢ ( 〈 𝐴 , 𝐵 〉 = { 𝐶 , 𝐷 } ↔ ( ( 𝐶 = { 𝐴 } ∧ 𝐷 = { 𝐴 , 𝐵 } ) ∨ ( 𝐶 = { 𝐴 , 𝐵 } ∧ 𝐷 = { 𝐴 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeqpr.1 | ⊢ 𝐴 ∈ V | |
| 2 | opeqpr.2 | ⊢ 𝐵 ∈ V | |
| 3 | opeqpr.3 | ⊢ 𝐶 ∈ V | |
| 4 | opeqpr.4 | ⊢ 𝐷 ∈ V | |
| 5 | eqcom | ⊢ ( 〈 𝐴 , 𝐵 〉 = { 𝐶 , 𝐷 } ↔ { 𝐶 , 𝐷 } = 〈 𝐴 , 𝐵 〉 ) | |
| 6 | 1 2 | dfop | ⊢ 〈 𝐴 , 𝐵 〉 = { { 𝐴 } , { 𝐴 , 𝐵 } } |
| 7 | 6 | eqeq2i | ⊢ ( { 𝐶 , 𝐷 } = 〈 𝐴 , 𝐵 〉 ↔ { 𝐶 , 𝐷 } = { { 𝐴 } , { 𝐴 , 𝐵 } } ) |
| 8 | snex | ⊢ { 𝐴 } ∈ V | |
| 9 | prex | ⊢ { 𝐴 , 𝐵 } ∈ V | |
| 10 | 3 4 8 9 | preq12b | ⊢ ( { 𝐶 , 𝐷 } = { { 𝐴 } , { 𝐴 , 𝐵 } } ↔ ( ( 𝐶 = { 𝐴 } ∧ 𝐷 = { 𝐴 , 𝐵 } ) ∨ ( 𝐶 = { 𝐴 , 𝐵 } ∧ 𝐷 = { 𝐴 } ) ) ) |
| 11 | 5 7 10 | 3bitri | ⊢ ( 〈 𝐴 , 𝐵 〉 = { 𝐶 , 𝐷 } ↔ ( ( 𝐶 = { 𝐴 } ∧ 𝐷 = { 𝐴 , 𝐵 } ) ∨ ( 𝐶 = { 𝐴 , 𝐵 } ∧ 𝐷 = { 𝐴 } ) ) ) |