This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: Equivalence for an ordered pair equal to an unordered pair.
(Contributed by NM, 3-Jun-2008) (Avoid depending on this detail.)
|
|
Ref |
Expression |
|
Hypotheses |
opeqpr.1 |
|
|
|
opeqpr.2 |
|
|
|
opeqpr.3 |
|
|
|
opeqpr.4 |
|
|
Assertion |
opeqpr |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opeqpr.1 |
|
| 2 |
|
opeqpr.2 |
|
| 3 |
|
opeqpr.3 |
|
| 4 |
|
opeqpr.4 |
|
| 5 |
|
eqcom |
|
| 6 |
1 2
|
dfop |
|
| 7 |
6
|
eqeq2i |
|
| 8 |
|
snex |
|
| 9 |
|
prex |
|
| 10 |
3 4 8 9
|
preq12b |
|
| 11 |
5 7 10
|
3bitri |
|