This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence for an ordered pair equal to an unordered pair. (Contributed by NM, 3-Jun-2008) (Avoid depending on this detail.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opeqpr.1 | |- A e. _V |
|
| opeqpr.2 | |- B e. _V |
||
| opeqpr.3 | |- C e. _V |
||
| opeqpr.4 | |- D e. _V |
||
| Assertion | opeqpr | |- ( <. A , B >. = { C , D } <-> ( ( C = { A } /\ D = { A , B } ) \/ ( C = { A , B } /\ D = { A } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeqpr.1 | |- A e. _V |
|
| 2 | opeqpr.2 | |- B e. _V |
|
| 3 | opeqpr.3 | |- C e. _V |
|
| 4 | opeqpr.4 | |- D e. _V |
|
| 5 | eqcom | |- ( <. A , B >. = { C , D } <-> { C , D } = <. A , B >. ) |
|
| 6 | 1 2 | dfop | |- <. A , B >. = { { A } , { A , B } } |
| 7 | 6 | eqeq2i | |- ( { C , D } = <. A , B >. <-> { C , D } = { { A } , { A , B } } ) |
| 8 | snex | |- { A } e. _V |
|
| 9 | prex | |- { A , B } e. _V |
|
| 10 | 3 4 8 9 | preq12b | |- ( { C , D } = { { A } , { A , B } } <-> ( ( C = { A } /\ D = { A , B } ) \/ ( C = { A , B } /\ D = { A } ) ) ) |
| 11 | 5 7 10 | 3bitri | |- ( <. A , B >. = { C , D } <-> ( ( C = { A } /\ D = { A , B } ) \/ ( C = { A , B } /\ D = { A } ) ) ) |