This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership of an ordered pair in a union of Cartesian products over its second component, analogous to opeliunxp . (Contributed by AV, 30-Mar-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opeliun2xp | ⊢ ( 〈 𝐶 , 𝑦 〉 ∈ ∪ 𝑦 ∈ 𝐵 ( 𝐴 × { 𝑦 } ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iun | ⊢ ∪ 𝑦 ∈ 𝐵 ( 𝐴 × { 𝑦 } ) = { 𝑥 ∣ ∃ 𝑦 ∈ 𝐵 𝑥 ∈ ( 𝐴 × { 𝑦 } ) } | |
| 2 | 1 | eleq2i | ⊢ ( 〈 𝐶 , 𝑦 〉 ∈ ∪ 𝑦 ∈ 𝐵 ( 𝐴 × { 𝑦 } ) ↔ 〈 𝐶 , 𝑦 〉 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ 𝐵 𝑥 ∈ ( 𝐴 × { 𝑦 } ) } ) |
| 3 | opex | ⊢ 〈 𝐶 , 𝑦 〉 ∈ V | |
| 4 | df-rex | ⊢ ( ∃ 𝑦 ∈ 𝐵 𝑥 ∈ ( 𝐴 × { 𝑦 } ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 × { 𝑦 } ) ) ) | |
| 5 | nfv | ⊢ Ⅎ 𝑧 ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 × { 𝑦 } ) ) | |
| 6 | nfs1v | ⊢ Ⅎ 𝑦 [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 | |
| 7 | nfcsb1v | ⊢ Ⅎ 𝑦 ⦋ 𝑧 / 𝑦 ⦌ 𝐴 | |
| 8 | nfcv | ⊢ Ⅎ 𝑦 { 𝑧 } | |
| 9 | 7 8 | nfxp | ⊢ Ⅎ 𝑦 ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) |
| 10 | 9 | nfcri | ⊢ Ⅎ 𝑦 𝑥 ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) |
| 11 | 6 10 | nfan | ⊢ Ⅎ 𝑦 ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ) |
| 12 | sbequ12 | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 ∈ 𝐵 ↔ [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ) ) | |
| 13 | csbeq1a | ⊢ ( 𝑦 = 𝑧 → 𝐴 = ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ) | |
| 14 | sneq | ⊢ ( 𝑦 = 𝑧 → { 𝑦 } = { 𝑧 } ) | |
| 15 | 13 14 | xpeq12d | ⊢ ( 𝑦 = 𝑧 → ( 𝐴 × { 𝑦 } ) = ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ) |
| 16 | 15 | eleq2d | ⊢ ( 𝑦 = 𝑧 → ( 𝑥 ∈ ( 𝐴 × { 𝑦 } ) ↔ 𝑥 ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ) ) |
| 17 | 12 16 | anbi12d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 × { 𝑦 } ) ) ↔ ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ) ) ) |
| 18 | 5 11 17 | cbvexv1 | ⊢ ( ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 × { 𝑦 } ) ) ↔ ∃ 𝑧 ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ) ) |
| 19 | 4 18 | bitri | ⊢ ( ∃ 𝑦 ∈ 𝐵 𝑥 ∈ ( 𝐴 × { 𝑦 } ) ↔ ∃ 𝑧 ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ) ) |
| 20 | eleq1 | ⊢ ( 𝑥 = 〈 𝐶 , 𝑦 〉 → ( 𝑥 ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ↔ 〈 𝐶 , 𝑦 〉 ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ) ) | |
| 21 | 20 | anbi2d | ⊢ ( 𝑥 = 〈 𝐶 , 𝑦 〉 → ( ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ) ↔ ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 〈 𝐶 , 𝑦 〉 ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ) ) ) |
| 22 | 21 | exbidv | ⊢ ( 𝑥 = 〈 𝐶 , 𝑦 〉 → ( ∃ 𝑧 ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ) ↔ ∃ 𝑧 ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 〈 𝐶 , 𝑦 〉 ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ) ) ) |
| 23 | 19 22 | bitrid | ⊢ ( 𝑥 = 〈 𝐶 , 𝑦 〉 → ( ∃ 𝑦 ∈ 𝐵 𝑥 ∈ ( 𝐴 × { 𝑦 } ) ↔ ∃ 𝑧 ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 〈 𝐶 , 𝑦 〉 ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ) ) ) |
| 24 | 3 23 | elab | ⊢ ( 〈 𝐶 , 𝑦 〉 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ 𝐵 𝑥 ∈ ( 𝐴 × { 𝑦 } ) } ↔ ∃ 𝑧 ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 〈 𝐶 , 𝑦 〉 ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ) ) |
| 25 | opelxp | ⊢ ( 〈 𝐶 , 𝑦 〉 ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ↔ ( 𝐶 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ∧ 𝑦 ∈ { 𝑧 } ) ) | |
| 26 | 25 | anbi2i | ⊢ ( ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 〈 𝐶 , 𝑦 〉 ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ) ↔ ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ ( 𝐶 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ∧ 𝑦 ∈ { 𝑧 } ) ) ) |
| 27 | an13 | ⊢ ( ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ ( 𝐶 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ∧ 𝑦 ∈ { 𝑧 } ) ) ↔ ( 𝑦 ∈ { 𝑧 } ∧ ( 𝐶 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ∧ [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ) ) ) | |
| 28 | ancom | ⊢ ( ( 𝐶 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ∧ [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ) ↔ ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ) ) | |
| 29 | 28 | anbi2i | ⊢ ( ( 𝑦 ∈ { 𝑧 } ∧ ( 𝐶 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ∧ [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ) ) ↔ ( 𝑦 ∈ { 𝑧 } ∧ ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ) ) ) |
| 30 | 27 29 | bitri | ⊢ ( ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ ( 𝐶 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ∧ 𝑦 ∈ { 𝑧 } ) ) ↔ ( 𝑦 ∈ { 𝑧 } ∧ ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ) ) ) |
| 31 | velsn | ⊢ ( 𝑦 ∈ { 𝑧 } ↔ 𝑦 = 𝑧 ) | |
| 32 | equcom | ⊢ ( 𝑦 = 𝑧 ↔ 𝑧 = 𝑦 ) | |
| 33 | 31 32 | bitri | ⊢ ( 𝑦 ∈ { 𝑧 } ↔ 𝑧 = 𝑦 ) |
| 34 | 33 | anbi1i | ⊢ ( ( 𝑦 ∈ { 𝑧 } ∧ ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ) ) ↔ ( 𝑧 = 𝑦 ∧ ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ) ) ) |
| 35 | 26 30 34 | 3bitri | ⊢ ( ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 〈 𝐶 , 𝑦 〉 ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ) ↔ ( 𝑧 = 𝑦 ∧ ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ) ) ) |
| 36 | 35 | exbii | ⊢ ( ∃ 𝑧 ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 〈 𝐶 , 𝑦 〉 ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ) ↔ ∃ 𝑧 ( 𝑧 = 𝑦 ∧ ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ) ) ) |
| 37 | sbequ12r | ⊢ ( 𝑧 = 𝑦 → ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵 ) ) | |
| 38 | 13 | equcoms | ⊢ ( 𝑧 = 𝑦 → 𝐴 = ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ) |
| 39 | 38 | eqcomd | ⊢ ( 𝑧 = 𝑦 → ⦋ 𝑧 / 𝑦 ⦌ 𝐴 = 𝐴 ) |
| 40 | 39 | eleq2d | ⊢ ( 𝑧 = 𝑦 → ( 𝐶 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ↔ 𝐶 ∈ 𝐴 ) ) |
| 41 | 37 40 | anbi12d | ⊢ ( 𝑧 = 𝑦 → ( ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴 ) ) ) |
| 42 | 41 | equsexvw | ⊢ ( ∃ 𝑧 ( 𝑧 = 𝑦 ∧ ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 ) ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴 ) ) |
| 43 | 36 42 | bitri | ⊢ ( ∃ 𝑧 ( [ 𝑧 / 𝑦 ] 𝑦 ∈ 𝐵 ∧ 〈 𝐶 , 𝑦 〉 ∈ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 × { 𝑧 } ) ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴 ) ) |
| 44 | 2 24 43 | 3bitri | ⊢ ( 〈 𝐶 , 𝑦 〉 ∈ ∪ 𝑦 ∈ 𝐵 ( 𝐴 × { 𝑦 } ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴 ) ) |