This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordinal is equal to its union if and only if it is not the successor of an ordinal. A closed-form generalization of this result is orduninsuc . (Contributed by NM, 18-Feb-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | onssi.1 | ⊢ 𝐴 ∈ On | |
| Assertion | onuninsuci | ⊢ ( 𝐴 = ∪ 𝐴 ↔ ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onssi.1 | ⊢ 𝐴 ∈ On | |
| 2 | 1 | onirri | ⊢ ¬ 𝐴 ∈ 𝐴 |
| 3 | id | ⊢ ( 𝐴 = ∪ 𝐴 → 𝐴 = ∪ 𝐴 ) | |
| 4 | df-suc | ⊢ suc 𝑥 = ( 𝑥 ∪ { 𝑥 } ) | |
| 5 | 4 | eqeq2i | ⊢ ( 𝐴 = suc 𝑥 ↔ 𝐴 = ( 𝑥 ∪ { 𝑥 } ) ) |
| 6 | unieq | ⊢ ( 𝐴 = ( 𝑥 ∪ { 𝑥 } ) → ∪ 𝐴 = ∪ ( 𝑥 ∪ { 𝑥 } ) ) | |
| 7 | 5 6 | sylbi | ⊢ ( 𝐴 = suc 𝑥 → ∪ 𝐴 = ∪ ( 𝑥 ∪ { 𝑥 } ) ) |
| 8 | uniun | ⊢ ∪ ( 𝑥 ∪ { 𝑥 } ) = ( ∪ 𝑥 ∪ ∪ { 𝑥 } ) | |
| 9 | unisnv | ⊢ ∪ { 𝑥 } = 𝑥 | |
| 10 | 9 | uneq2i | ⊢ ( ∪ 𝑥 ∪ ∪ { 𝑥 } ) = ( ∪ 𝑥 ∪ 𝑥 ) |
| 11 | 8 10 | eqtri | ⊢ ∪ ( 𝑥 ∪ { 𝑥 } ) = ( ∪ 𝑥 ∪ 𝑥 ) |
| 12 | 7 11 | eqtrdi | ⊢ ( 𝐴 = suc 𝑥 → ∪ 𝐴 = ( ∪ 𝑥 ∪ 𝑥 ) ) |
| 13 | tron | ⊢ Tr On | |
| 14 | eleq1 | ⊢ ( 𝐴 = suc 𝑥 → ( 𝐴 ∈ On ↔ suc 𝑥 ∈ On ) ) | |
| 15 | 1 14 | mpbii | ⊢ ( 𝐴 = suc 𝑥 → suc 𝑥 ∈ On ) |
| 16 | trsuc | ⊢ ( ( Tr On ∧ suc 𝑥 ∈ On ) → 𝑥 ∈ On ) | |
| 17 | 13 15 16 | sylancr | ⊢ ( 𝐴 = suc 𝑥 → 𝑥 ∈ On ) |
| 18 | ontr | ⊢ ( 𝑥 ∈ On → Tr 𝑥 ) | |
| 19 | df-tr | ⊢ ( Tr 𝑥 ↔ ∪ 𝑥 ⊆ 𝑥 ) | |
| 20 | 18 19 | sylib | ⊢ ( 𝑥 ∈ On → ∪ 𝑥 ⊆ 𝑥 ) |
| 21 | 17 20 | syl | ⊢ ( 𝐴 = suc 𝑥 → ∪ 𝑥 ⊆ 𝑥 ) |
| 22 | ssequn1 | ⊢ ( ∪ 𝑥 ⊆ 𝑥 ↔ ( ∪ 𝑥 ∪ 𝑥 ) = 𝑥 ) | |
| 23 | 21 22 | sylib | ⊢ ( 𝐴 = suc 𝑥 → ( ∪ 𝑥 ∪ 𝑥 ) = 𝑥 ) |
| 24 | 12 23 | eqtrd | ⊢ ( 𝐴 = suc 𝑥 → ∪ 𝐴 = 𝑥 ) |
| 25 | 3 24 | sylan9eqr | ⊢ ( ( 𝐴 = suc 𝑥 ∧ 𝐴 = ∪ 𝐴 ) → 𝐴 = 𝑥 ) |
| 26 | vex | ⊢ 𝑥 ∈ V | |
| 27 | 26 | sucid | ⊢ 𝑥 ∈ suc 𝑥 |
| 28 | eleq2 | ⊢ ( 𝐴 = suc 𝑥 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ suc 𝑥 ) ) | |
| 29 | 27 28 | mpbiri | ⊢ ( 𝐴 = suc 𝑥 → 𝑥 ∈ 𝐴 ) |
| 30 | 29 | adantr | ⊢ ( ( 𝐴 = suc 𝑥 ∧ 𝐴 = ∪ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
| 31 | 25 30 | eqeltrd | ⊢ ( ( 𝐴 = suc 𝑥 ∧ 𝐴 = ∪ 𝐴 ) → 𝐴 ∈ 𝐴 ) |
| 32 | 2 31 | mto | ⊢ ¬ ( 𝐴 = suc 𝑥 ∧ 𝐴 = ∪ 𝐴 ) |
| 33 | 32 | imnani | ⊢ ( 𝐴 = suc 𝑥 → ¬ 𝐴 = ∪ 𝐴 ) |
| 34 | 33 | rexlimivw | ⊢ ( ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 → ¬ 𝐴 = ∪ 𝐴 ) |
| 35 | onuni | ⊢ ( 𝐴 ∈ On → ∪ 𝐴 ∈ On ) | |
| 36 | 1 35 | ax-mp | ⊢ ∪ 𝐴 ∈ On |
| 37 | onuniorsuc | ⊢ ( 𝐴 ∈ On → ( 𝐴 = ∪ 𝐴 ∨ 𝐴 = suc ∪ 𝐴 ) ) | |
| 38 | 1 37 | ax-mp | ⊢ ( 𝐴 = ∪ 𝐴 ∨ 𝐴 = suc ∪ 𝐴 ) |
| 39 | 38 | ori | ⊢ ( ¬ 𝐴 = ∪ 𝐴 → 𝐴 = suc ∪ 𝐴 ) |
| 40 | suceq | ⊢ ( 𝑥 = ∪ 𝐴 → suc 𝑥 = suc ∪ 𝐴 ) | |
| 41 | 40 | rspceeqv | ⊢ ( ( ∪ 𝐴 ∈ On ∧ 𝐴 = suc ∪ 𝐴 ) → ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) |
| 42 | 36 39 41 | sylancr | ⊢ ( ¬ 𝐴 = ∪ 𝐴 → ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) |
| 43 | 34 42 | impbii | ⊢ ( ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ↔ ¬ 𝐴 = ∪ 𝐴 ) |
| 44 | 43 | con2bii | ⊢ ( 𝐴 = ∪ 𝐴 ↔ ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) |