This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordinal is equal to its union if and only if it is not the successor of an ordinal. A closed-form generalization of this result is orduninsuc . (Contributed by NM, 18-Feb-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | onssi.1 | |- A e. On |
|
| Assertion | onuninsuci | |- ( A = U. A <-> -. E. x e. On A = suc x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onssi.1 | |- A e. On |
|
| 2 | 1 | onirri | |- -. A e. A |
| 3 | id | |- ( A = U. A -> A = U. A ) |
|
| 4 | df-suc | |- suc x = ( x u. { x } ) |
|
| 5 | 4 | eqeq2i | |- ( A = suc x <-> A = ( x u. { x } ) ) |
| 6 | unieq | |- ( A = ( x u. { x } ) -> U. A = U. ( x u. { x } ) ) |
|
| 7 | 5 6 | sylbi | |- ( A = suc x -> U. A = U. ( x u. { x } ) ) |
| 8 | uniun | |- U. ( x u. { x } ) = ( U. x u. U. { x } ) |
|
| 9 | unisnv | |- U. { x } = x |
|
| 10 | 9 | uneq2i | |- ( U. x u. U. { x } ) = ( U. x u. x ) |
| 11 | 8 10 | eqtri | |- U. ( x u. { x } ) = ( U. x u. x ) |
| 12 | 7 11 | eqtrdi | |- ( A = suc x -> U. A = ( U. x u. x ) ) |
| 13 | tron | |- Tr On |
|
| 14 | eleq1 | |- ( A = suc x -> ( A e. On <-> suc x e. On ) ) |
|
| 15 | 1 14 | mpbii | |- ( A = suc x -> suc x e. On ) |
| 16 | trsuc | |- ( ( Tr On /\ suc x e. On ) -> x e. On ) |
|
| 17 | 13 15 16 | sylancr | |- ( A = suc x -> x e. On ) |
| 18 | ontr | |- ( x e. On -> Tr x ) |
|
| 19 | df-tr | |- ( Tr x <-> U. x C_ x ) |
|
| 20 | 18 19 | sylib | |- ( x e. On -> U. x C_ x ) |
| 21 | 17 20 | syl | |- ( A = suc x -> U. x C_ x ) |
| 22 | ssequn1 | |- ( U. x C_ x <-> ( U. x u. x ) = x ) |
|
| 23 | 21 22 | sylib | |- ( A = suc x -> ( U. x u. x ) = x ) |
| 24 | 12 23 | eqtrd | |- ( A = suc x -> U. A = x ) |
| 25 | 3 24 | sylan9eqr | |- ( ( A = suc x /\ A = U. A ) -> A = x ) |
| 26 | vex | |- x e. _V |
|
| 27 | 26 | sucid | |- x e. suc x |
| 28 | eleq2 | |- ( A = suc x -> ( x e. A <-> x e. suc x ) ) |
|
| 29 | 27 28 | mpbiri | |- ( A = suc x -> x e. A ) |
| 30 | 29 | adantr | |- ( ( A = suc x /\ A = U. A ) -> x e. A ) |
| 31 | 25 30 | eqeltrd | |- ( ( A = suc x /\ A = U. A ) -> A e. A ) |
| 32 | 2 31 | mto | |- -. ( A = suc x /\ A = U. A ) |
| 33 | 32 | imnani | |- ( A = suc x -> -. A = U. A ) |
| 34 | 33 | rexlimivw | |- ( E. x e. On A = suc x -> -. A = U. A ) |
| 35 | onuni | |- ( A e. On -> U. A e. On ) |
|
| 36 | 1 35 | ax-mp | |- U. A e. On |
| 37 | onuniorsuc | |- ( A e. On -> ( A = U. A \/ A = suc U. A ) ) |
|
| 38 | 1 37 | ax-mp | |- ( A = U. A \/ A = suc U. A ) |
| 39 | 38 | ori | |- ( -. A = U. A -> A = suc U. A ) |
| 40 | suceq | |- ( x = U. A -> suc x = suc U. A ) |
|
| 41 | 40 | rspceeqv | |- ( ( U. A e. On /\ A = suc U. A ) -> E. x e. On A = suc x ) |
| 42 | 36 39 41 | sylancr | |- ( -. A = U. A -> E. x e. On A = suc x ) |
| 43 | 34 42 | impbii | |- ( E. x e. On A = suc x <-> -. A = U. A ) |
| 44 | 43 | con2bii | |- ( A = U. A <-> -. E. x e. On A = suc x ) |