This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a property is true for some ordinal number, it is true for a minimal ordinal number. This version uses explicit substitution. Theorem Schema 62 of Suppes p. 228. (Contributed by NM, 29-Sep-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onminesb | ⊢ ( ∃ 𝑥 ∈ On 𝜑 → [ ∩ { 𝑥 ∈ On ∣ 𝜑 } / 𝑥 ] 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabn0 | ⊢ ( { 𝑥 ∈ On ∣ 𝜑 } ≠ ∅ ↔ ∃ 𝑥 ∈ On 𝜑 ) | |
| 2 | ssrab2 | ⊢ { 𝑥 ∈ On ∣ 𝜑 } ⊆ On | |
| 3 | onint | ⊢ ( ( { 𝑥 ∈ On ∣ 𝜑 } ⊆ On ∧ { 𝑥 ∈ On ∣ 𝜑 } ≠ ∅ ) → ∩ { 𝑥 ∈ On ∣ 𝜑 } ∈ { 𝑥 ∈ On ∣ 𝜑 } ) | |
| 4 | 2 3 | mpan | ⊢ ( { 𝑥 ∈ On ∣ 𝜑 } ≠ ∅ → ∩ { 𝑥 ∈ On ∣ 𝜑 } ∈ { 𝑥 ∈ On ∣ 𝜑 } ) |
| 5 | 1 4 | sylbir | ⊢ ( ∃ 𝑥 ∈ On 𝜑 → ∩ { 𝑥 ∈ On ∣ 𝜑 } ∈ { 𝑥 ∈ On ∣ 𝜑 } ) |
| 6 | nfcv | ⊢ Ⅎ 𝑥 On | |
| 7 | 6 | elrabsf | ⊢ ( ∩ { 𝑥 ∈ On ∣ 𝜑 } ∈ { 𝑥 ∈ On ∣ 𝜑 } ↔ ( ∩ { 𝑥 ∈ On ∣ 𝜑 } ∈ On ∧ [ ∩ { 𝑥 ∈ On ∣ 𝜑 } / 𝑥 ] 𝜑 ) ) |
| 8 | 7 | simprbi | ⊢ ( ∩ { 𝑥 ∈ On ∣ 𝜑 } ∈ { 𝑥 ∈ On ∣ 𝜑 } → [ ∩ { 𝑥 ∈ On ∣ 𝜑 } / 𝑥 ] 𝜑 ) |
| 9 | 5 8 | syl | ⊢ ( ∃ 𝑥 ∈ On 𝜑 → [ ∩ { 𝑥 ∈ On ∣ 𝜑 } / 𝑥 ] 𝜑 ) |