This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a property is true for some ordinal number, it is true for a minimal ordinal number. This version uses explicit substitution. Theorem Schema 62 of Suppes p. 228. (Contributed by NM, 29-Sep-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onminesb |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabn0 | ||
| 2 | ssrab2 | ||
| 3 | onint | ||
| 4 | 2 3 | mpan | |
| 5 | 1 4 | sylbir | |
| 6 | nfcv | ||
| 7 | 6 | elrabsf | |
| 8 | 7 | simprbi | |
| 9 | 5 8 | syl |