This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a property is true for some ordinal number, it is true for a minimal ordinal number. This version uses explicit substitution. Theorem Schema 62 of Suppes p. 228. (Contributed by NM, 29-Sep-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onminesb | |- ( E. x e. On ph -> [. |^| { x e. On | ph } / x ]. ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabn0 | |- ( { x e. On | ph } =/= (/) <-> E. x e. On ph ) |
|
| 2 | ssrab2 | |- { x e. On | ph } C_ On |
|
| 3 | onint | |- ( ( { x e. On | ph } C_ On /\ { x e. On | ph } =/= (/) ) -> |^| { x e. On | ph } e. { x e. On | ph } ) |
|
| 4 | 2 3 | mpan | |- ( { x e. On | ph } =/= (/) -> |^| { x e. On | ph } e. { x e. On | ph } ) |
| 5 | 1 4 | sylbir | |- ( E. x e. On ph -> |^| { x e. On | ph } e. { x e. On | ph } ) |
| 6 | nfcv | |- F/_ x On |
|
| 7 | 6 | elrabsf | |- ( |^| { x e. On | ph } e. { x e. On | ph } <-> ( |^| { x e. On | ph } e. On /\ [. |^| { x e. On | ph } / x ]. ph ) ) |
| 8 | 7 | simprbi | |- ( |^| { x e. On | ph } e. { x e. On | ph } -> [. |^| { x e. On | ph } / x ]. ph ) |
| 9 | 5 8 | syl | |- ( E. x e. On ph -> [. |^| { x e. On | ph } / x ]. ph ) |