This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The minimum of a class of ordinal numbers is less than the minimum of that class with its minimum removed. (Contributed by NM, 20-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onmindif2 | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ∈ ∩ ( 𝐴 ∖ { ∩ 𝐴 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsn | ⊢ ( 𝑥 ∈ ( 𝐴 ∖ { ∩ 𝐴 } ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≠ ∩ 𝐴 ) ) | |
| 2 | onnmin | ⊢ ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) → ¬ 𝑥 ∈ ∩ 𝐴 ) | |
| 3 | 2 | adantlr | ⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ 𝐴 ) → ¬ 𝑥 ∈ ∩ 𝐴 ) |
| 4 | oninton | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ∈ On ) | |
| 5 | ssel2 | ⊢ ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ On ) | |
| 6 | 5 | adantlr | ⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ On ) |
| 7 | ontri1 | ⊢ ( ( ∩ 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( ∩ 𝐴 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ ∩ 𝐴 ) ) | |
| 8 | onsseleq | ⊢ ( ( ∩ 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( ∩ 𝐴 ⊆ 𝑥 ↔ ( ∩ 𝐴 ∈ 𝑥 ∨ ∩ 𝐴 = 𝑥 ) ) ) | |
| 9 | 7 8 | bitr3d | ⊢ ( ( ∩ 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( ¬ 𝑥 ∈ ∩ 𝐴 ↔ ( ∩ 𝐴 ∈ 𝑥 ∨ ∩ 𝐴 = 𝑥 ) ) ) |
| 10 | 4 6 9 | syl2an2r | ⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ 𝐴 ) → ( ¬ 𝑥 ∈ ∩ 𝐴 ↔ ( ∩ 𝐴 ∈ 𝑥 ∨ ∩ 𝐴 = 𝑥 ) ) ) |
| 11 | 3 10 | mpbid | ⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ 𝐴 ) → ( ∩ 𝐴 ∈ 𝑥 ∨ ∩ 𝐴 = 𝑥 ) ) |
| 12 | 11 | ord | ⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ 𝐴 ) → ( ¬ ∩ 𝐴 ∈ 𝑥 → ∩ 𝐴 = 𝑥 ) ) |
| 13 | eqcom | ⊢ ( ∩ 𝐴 = 𝑥 ↔ 𝑥 = ∩ 𝐴 ) | |
| 14 | 12 13 | imbitrdi | ⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ 𝐴 ) → ( ¬ ∩ 𝐴 ∈ 𝑥 → 𝑥 = ∩ 𝐴 ) ) |
| 15 | 14 | necon1ad | ⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ≠ ∩ 𝐴 → ∩ 𝐴 ∈ 𝑥 ) ) |
| 16 | 15 | expimpd | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≠ ∩ 𝐴 ) → ∩ 𝐴 ∈ 𝑥 ) ) |
| 17 | 1 16 | biimtrid | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ( 𝑥 ∈ ( 𝐴 ∖ { ∩ 𝐴 } ) → ∩ 𝐴 ∈ 𝑥 ) ) |
| 18 | 17 | ralrimiv | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ∀ 𝑥 ∈ ( 𝐴 ∖ { ∩ 𝐴 } ) ∩ 𝐴 ∈ 𝑥 ) |
| 19 | intex | ⊢ ( 𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V ) | |
| 20 | elintg | ⊢ ( ∩ 𝐴 ∈ V → ( ∩ 𝐴 ∈ ∩ ( 𝐴 ∖ { ∩ 𝐴 } ) ↔ ∀ 𝑥 ∈ ( 𝐴 ∖ { ∩ 𝐴 } ) ∩ 𝐴 ∈ 𝑥 ) ) | |
| 21 | 19 20 | sylbi | ⊢ ( 𝐴 ≠ ∅ → ( ∩ 𝐴 ∈ ∩ ( 𝐴 ∖ { ∩ 𝐴 } ) ↔ ∀ 𝑥 ∈ ( 𝐴 ∖ { ∩ 𝐴 } ) ∩ 𝐴 ∈ 𝑥 ) ) |
| 22 | 21 | adantl | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ( ∩ 𝐴 ∈ ∩ ( 𝐴 ∖ { ∩ 𝐴 } ) ↔ ∀ 𝑥 ∈ ( 𝐴 ∖ { ∩ 𝐴 } ) ∩ 𝐴 ∈ 𝑥 ) ) |
| 23 | 18 22 | mpbird | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ∈ ∩ ( 𝐴 ∖ { ∩ 𝐴 } ) ) |