This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The minimum of a class of ordinal numbers is less than the minimum of that class with its minimum removed. (Contributed by NM, 20-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onmindif2 | |- ( ( A C_ On /\ A =/= (/) ) -> |^| A e. |^| ( A \ { |^| A } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsn | |- ( x e. ( A \ { |^| A } ) <-> ( x e. A /\ x =/= |^| A ) ) |
|
| 2 | onnmin | |- ( ( A C_ On /\ x e. A ) -> -. x e. |^| A ) |
|
| 3 | 2 | adantlr | |- ( ( ( A C_ On /\ A =/= (/) ) /\ x e. A ) -> -. x e. |^| A ) |
| 4 | oninton | |- ( ( A C_ On /\ A =/= (/) ) -> |^| A e. On ) |
|
| 5 | ssel2 | |- ( ( A C_ On /\ x e. A ) -> x e. On ) |
|
| 6 | 5 | adantlr | |- ( ( ( A C_ On /\ A =/= (/) ) /\ x e. A ) -> x e. On ) |
| 7 | ontri1 | |- ( ( |^| A e. On /\ x e. On ) -> ( |^| A C_ x <-> -. x e. |^| A ) ) |
|
| 8 | onsseleq | |- ( ( |^| A e. On /\ x e. On ) -> ( |^| A C_ x <-> ( |^| A e. x \/ |^| A = x ) ) ) |
|
| 9 | 7 8 | bitr3d | |- ( ( |^| A e. On /\ x e. On ) -> ( -. x e. |^| A <-> ( |^| A e. x \/ |^| A = x ) ) ) |
| 10 | 4 6 9 | syl2an2r | |- ( ( ( A C_ On /\ A =/= (/) ) /\ x e. A ) -> ( -. x e. |^| A <-> ( |^| A e. x \/ |^| A = x ) ) ) |
| 11 | 3 10 | mpbid | |- ( ( ( A C_ On /\ A =/= (/) ) /\ x e. A ) -> ( |^| A e. x \/ |^| A = x ) ) |
| 12 | 11 | ord | |- ( ( ( A C_ On /\ A =/= (/) ) /\ x e. A ) -> ( -. |^| A e. x -> |^| A = x ) ) |
| 13 | eqcom | |- ( |^| A = x <-> x = |^| A ) |
|
| 14 | 12 13 | imbitrdi | |- ( ( ( A C_ On /\ A =/= (/) ) /\ x e. A ) -> ( -. |^| A e. x -> x = |^| A ) ) |
| 15 | 14 | necon1ad | |- ( ( ( A C_ On /\ A =/= (/) ) /\ x e. A ) -> ( x =/= |^| A -> |^| A e. x ) ) |
| 16 | 15 | expimpd | |- ( ( A C_ On /\ A =/= (/) ) -> ( ( x e. A /\ x =/= |^| A ) -> |^| A e. x ) ) |
| 17 | 1 16 | biimtrid | |- ( ( A C_ On /\ A =/= (/) ) -> ( x e. ( A \ { |^| A } ) -> |^| A e. x ) ) |
| 18 | 17 | ralrimiv | |- ( ( A C_ On /\ A =/= (/) ) -> A. x e. ( A \ { |^| A } ) |^| A e. x ) |
| 19 | intex | |- ( A =/= (/) <-> |^| A e. _V ) |
|
| 20 | elintg | |- ( |^| A e. _V -> ( |^| A e. |^| ( A \ { |^| A } ) <-> A. x e. ( A \ { |^| A } ) |^| A e. x ) ) |
|
| 21 | 19 20 | sylbi | |- ( A =/= (/) -> ( |^| A e. |^| ( A \ { |^| A } ) <-> A. x e. ( A \ { |^| A } ) |^| A e. x ) ) |
| 22 | 21 | adantl | |- ( ( A C_ On /\ A =/= (/) ) -> ( |^| A e. |^| ( A \ { |^| A } ) <-> A. x e. ( A \ { |^| A } ) |^| A e. x ) ) |
| 23 | 18 22 | mpbird | |- ( ( A C_ On /\ A =/= (/) ) -> |^| A e. |^| ( A \ { |^| A } ) ) |