This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of a class of ordinal numbers is zero iff the class contains zero. (Contributed by NM, 24-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onint0 | ⊢ ( 𝐴 ⊆ On → ( ∩ 𝐴 = ∅ ↔ ∅ ∈ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex | ⊢ ∅ ∈ V | |
| 2 | eleq1 | ⊢ ( ∩ 𝐴 = ∅ → ( ∩ 𝐴 ∈ V ↔ ∅ ∈ V ) ) | |
| 3 | 1 2 | mpbiri | ⊢ ( ∩ 𝐴 = ∅ → ∩ 𝐴 ∈ V ) |
| 4 | intex | ⊢ ( 𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V ) | |
| 5 | 3 4 | sylibr | ⊢ ( ∩ 𝐴 = ∅ → 𝐴 ≠ ∅ ) |
| 6 | onint | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ∈ 𝐴 ) | |
| 7 | 5 6 | sylan2 | ⊢ ( ( 𝐴 ⊆ On ∧ ∩ 𝐴 = ∅ ) → ∩ 𝐴 ∈ 𝐴 ) |
| 8 | eleq1 | ⊢ ( ∩ 𝐴 = ∅ → ( ∩ 𝐴 ∈ 𝐴 ↔ ∅ ∈ 𝐴 ) ) | |
| 9 | 8 | adantl | ⊢ ( ( 𝐴 ⊆ On ∧ ∩ 𝐴 = ∅ ) → ( ∩ 𝐴 ∈ 𝐴 ↔ ∅ ∈ 𝐴 ) ) |
| 10 | 7 9 | mpbid | ⊢ ( ( 𝐴 ⊆ On ∧ ∩ 𝐴 = ∅ ) → ∅ ∈ 𝐴 ) |
| 11 | 10 | ex | ⊢ ( 𝐴 ⊆ On → ( ∩ 𝐴 = ∅ → ∅ ∈ 𝐴 ) ) |
| 12 | int0el | ⊢ ( ∅ ∈ 𝐴 → ∩ 𝐴 = ∅ ) | |
| 13 | 11 12 | impbid1 | ⊢ ( 𝐴 ⊆ On → ( ∩ 𝐴 = ∅ ↔ ∅ ∈ 𝐴 ) ) |