This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to say that A is an ordinal greater than one. (Contributed by Mario Carneiro, 21-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ondif2 | |- ( A e. ( On \ 2o ) <-> ( A e. On /\ 1o e. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif | |- ( A e. ( On \ 2o ) <-> ( A e. On /\ -. A e. 2o ) ) |
|
| 2 | 1on | |- 1o e. On |
|
| 3 | ontri1 | |- ( ( A e. On /\ 1o e. On ) -> ( A C_ 1o <-> -. 1o e. A ) ) |
|
| 4 | onsssuc | |- ( ( A e. On /\ 1o e. On ) -> ( A C_ 1o <-> A e. suc 1o ) ) |
|
| 5 | df-2o | |- 2o = suc 1o |
|
| 6 | 5 | eleq2i | |- ( A e. 2o <-> A e. suc 1o ) |
| 7 | 4 6 | bitr4di | |- ( ( A e. On /\ 1o e. On ) -> ( A C_ 1o <-> A e. 2o ) ) |
| 8 | 3 7 | bitr3d | |- ( ( A e. On /\ 1o e. On ) -> ( -. 1o e. A <-> A e. 2o ) ) |
| 9 | 2 8 | mpan2 | |- ( A e. On -> ( -. 1o e. A <-> A e. 2o ) ) |
| 10 | 9 | con1bid | |- ( A e. On -> ( -. A e. 2o <-> 1o e. A ) ) |
| 11 | 10 | pm5.32i | |- ( ( A e. On /\ -. A e. 2o ) <-> ( A e. On /\ 1o e. A ) ) |
| 12 | 1 11 | bitri | |- ( A e. ( On \ 2o ) <-> ( A e. On /\ 1o e. A ) ) |