This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordered pair theorem for nonnegative integers. Theorem 17.3 of Quine p. 124. We can represent an ordered pair of nonnegative integers A and B by ( ( ( A + B ) x. ( A + B ) ) + B ) . If two such ordered pairs are equal, their first elements are equal and their second elements are equal. Contrast this ordered pair representation with the standard one df-op that works for any set. (Contributed by Raph Levien, 10-Dec-2002) (Proof shortened by Scott Fenton, 8-Sep-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nn0opth.1 | ⊢ 𝐴 ∈ ℕ0 | |
| nn0opth.2 | ⊢ 𝐵 ∈ ℕ0 | ||
| nn0opth.3 | ⊢ 𝐶 ∈ ℕ0 | ||
| nn0opth.4 | ⊢ 𝐷 ∈ ℕ0 | ||
| Assertion | nn0opthi | ⊢ ( ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0opth.1 | ⊢ 𝐴 ∈ ℕ0 | |
| 2 | nn0opth.2 | ⊢ 𝐵 ∈ ℕ0 | |
| 3 | nn0opth.3 | ⊢ 𝐶 ∈ ℕ0 | |
| 4 | nn0opth.4 | ⊢ 𝐷 ∈ ℕ0 | |
| 5 | 1 2 | nn0addcli | ⊢ ( 𝐴 + 𝐵 ) ∈ ℕ0 |
| 6 | 5 | nn0rei | ⊢ ( 𝐴 + 𝐵 ) ∈ ℝ |
| 7 | 3 4 | nn0addcli | ⊢ ( 𝐶 + 𝐷 ) ∈ ℕ0 |
| 8 | 7 | nn0rei | ⊢ ( 𝐶 + 𝐷 ) ∈ ℝ |
| 9 | 6 8 | lttri2i | ⊢ ( ( 𝐴 + 𝐵 ) ≠ ( 𝐶 + 𝐷 ) ↔ ( ( 𝐴 + 𝐵 ) < ( 𝐶 + 𝐷 ) ∨ ( 𝐶 + 𝐷 ) < ( 𝐴 + 𝐵 ) ) ) |
| 10 | 1 2 7 4 | nn0opthlem2 | ⊢ ( ( 𝐴 + 𝐵 ) < ( 𝐶 + 𝐷 ) → ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) ≠ ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) ) |
| 11 | 10 | necomd | ⊢ ( ( 𝐴 + 𝐵 ) < ( 𝐶 + 𝐷 ) → ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) ≠ ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) ) |
| 12 | 3 4 5 2 | nn0opthlem2 | ⊢ ( ( 𝐶 + 𝐷 ) < ( 𝐴 + 𝐵 ) → ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) ≠ ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) ) |
| 13 | 11 12 | jaoi | ⊢ ( ( ( 𝐴 + 𝐵 ) < ( 𝐶 + 𝐷 ) ∨ ( 𝐶 + 𝐷 ) < ( 𝐴 + 𝐵 ) ) → ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) ≠ ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) ) |
| 14 | 9 13 | sylbi | ⊢ ( ( 𝐴 + 𝐵 ) ≠ ( 𝐶 + 𝐷 ) → ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) ≠ ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) ) |
| 15 | 14 | necon4i | ⊢ ( ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) → ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) |
| 16 | id | ⊢ ( ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) → ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) ) | |
| 17 | 15 15 | oveq12d | ⊢ ( ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) → ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) = ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) ) |
| 18 | 17 | oveq1d | ⊢ ( ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) → ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐷 ) = ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) ) |
| 19 | 16 18 | eqtr4d | ⊢ ( ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) → ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) = ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐷 ) ) |
| 20 | 5 | nn0cni | ⊢ ( 𝐴 + 𝐵 ) ∈ ℂ |
| 21 | 20 20 | mulcli | ⊢ ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) ∈ ℂ |
| 22 | 2 | nn0cni | ⊢ 𝐵 ∈ ℂ |
| 23 | 4 | nn0cni | ⊢ 𝐷 ∈ ℂ |
| 24 | 21 22 23 | addcani | ⊢ ( ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) = ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐷 ) ↔ 𝐵 = 𝐷 ) |
| 25 | 19 24 | sylib | ⊢ ( ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) → 𝐵 = 𝐷 ) |
| 26 | 25 | oveq2d | ⊢ ( ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) → ( 𝐶 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) |
| 27 | 15 26 | eqtr4d | ⊢ ( ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) → ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐵 ) ) |
| 28 | 1 | nn0cni | ⊢ 𝐴 ∈ ℂ |
| 29 | 3 | nn0cni | ⊢ 𝐶 ∈ ℂ |
| 30 | 28 29 22 | addcan2i | ⊢ ( ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐵 ) ↔ 𝐴 = 𝐶 ) |
| 31 | 27 30 | sylib | ⊢ ( ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) → 𝐴 = 𝐶 ) |
| 32 | 31 25 | jca | ⊢ ( ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
| 33 | oveq12 | ⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) | |
| 34 | 33 33 | oveq12d | ⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) = ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) ) |
| 35 | simpr | ⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → 𝐵 = 𝐷 ) | |
| 36 | 34 35 | oveq12d | ⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) ) |
| 37 | 32 36 | impbii | ⊢ ( ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |