This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Orthomodular law equivalent. Theorem 2(ii) of Kalmbach p. 22. ( pjoml analog.) (Contributed by NM, 19-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | omllaw3.b | |- B = ( Base ` K ) |
|
| omllaw3.l | |- .<_ = ( le ` K ) |
||
| omllaw3.m | |- ./\ = ( meet ` K ) |
||
| omllaw3.o | |- ._|_ = ( oc ` K ) |
||
| omllaw3.z | |- .0. = ( 0. ` K ) |
||
| Assertion | omllaw3 | |- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( ( X .<_ Y /\ ( Y ./\ ( ._|_ ` X ) ) = .0. ) -> X = Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omllaw3.b | |- B = ( Base ` K ) |
|
| 2 | omllaw3.l | |- .<_ = ( le ` K ) |
|
| 3 | omllaw3.m | |- ./\ = ( meet ` K ) |
|
| 4 | omllaw3.o | |- ._|_ = ( oc ` K ) |
|
| 5 | omllaw3.z | |- .0. = ( 0. ` K ) |
|
| 6 | oveq2 | |- ( ( Y ./\ ( ._|_ ` X ) ) = .0. -> ( X ( join ` K ) ( Y ./\ ( ._|_ ` X ) ) ) = ( X ( join ` K ) .0. ) ) |
|
| 7 | 6 | adantl | |- ( ( ( K e. OML /\ X e. B /\ Y e. B ) /\ ( Y ./\ ( ._|_ ` X ) ) = .0. ) -> ( X ( join ` K ) ( Y ./\ ( ._|_ ` X ) ) ) = ( X ( join ` K ) .0. ) ) |
| 8 | omlol | |- ( K e. OML -> K e. OL ) |
|
| 9 | eqid | |- ( join ` K ) = ( join ` K ) |
|
| 10 | 1 9 5 | olj01 | |- ( ( K e. OL /\ X e. B ) -> ( X ( join ` K ) .0. ) = X ) |
| 11 | 8 10 | sylan | |- ( ( K e. OML /\ X e. B ) -> ( X ( join ` K ) .0. ) = X ) |
| 12 | 11 | 3adant3 | |- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( X ( join ` K ) .0. ) = X ) |
| 13 | 12 | adantr | |- ( ( ( K e. OML /\ X e. B /\ Y e. B ) /\ ( Y ./\ ( ._|_ ` X ) ) = .0. ) -> ( X ( join ` K ) .0. ) = X ) |
| 14 | 7 13 | eqtr2d | |- ( ( ( K e. OML /\ X e. B /\ Y e. B ) /\ ( Y ./\ ( ._|_ ` X ) ) = .0. ) -> X = ( X ( join ` K ) ( Y ./\ ( ._|_ ` X ) ) ) ) |
| 15 | 14 | adantrl | |- ( ( ( K e. OML /\ X e. B /\ Y e. B ) /\ ( X .<_ Y /\ ( Y ./\ ( ._|_ ` X ) ) = .0. ) ) -> X = ( X ( join ` K ) ( Y ./\ ( ._|_ ` X ) ) ) ) |
| 16 | 1 2 9 3 4 | omllaw | |- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( X .<_ Y -> Y = ( X ( join ` K ) ( Y ./\ ( ._|_ ` X ) ) ) ) ) |
| 17 | 16 | imp | |- ( ( ( K e. OML /\ X e. B /\ Y e. B ) /\ X .<_ Y ) -> Y = ( X ( join ` K ) ( Y ./\ ( ._|_ ` X ) ) ) ) |
| 18 | 17 | adantrr | |- ( ( ( K e. OML /\ X e. B /\ Y e. B ) /\ ( X .<_ Y /\ ( Y ./\ ( ._|_ ` X ) ) = .0. ) ) -> Y = ( X ( join ` K ) ( Y ./\ ( ._|_ ` X ) ) ) ) |
| 19 | 15 18 | eqtr4d | |- ( ( ( K e. OML /\ X e. B /\ Y e. B ) /\ ( X .<_ Y /\ ( Y ./\ ( ._|_ ` X ) ) = .0. ) ) -> X = Y ) |
| 20 | 19 | ex | |- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( ( X .<_ Y /\ ( Y ./\ ( ._|_ ` X ) ) = .0. ) -> X = Y ) ) |