This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a right ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 4-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ogrpaddlt.0 | |- B = ( Base ` G ) |
|
| ogrpaddlt.1 | |- .< = ( lt ` G ) |
||
| ogrpaddlt.2 | |- .+ = ( +g ` G ) |
||
| ogrpaddltrd.1 | |- ( ph -> G e. V ) |
||
| ogrpaddltrd.2 | |- ( ph -> ( oppG ` G ) e. oGrp ) |
||
| ogrpaddltrd.3 | |- ( ph -> X e. B ) |
||
| ogrpaddltrd.4 | |- ( ph -> Y e. B ) |
||
| ogrpaddltrd.5 | |- ( ph -> Z e. B ) |
||
| Assertion | ogrpaddltrbid | |- ( ph -> ( X .< Y <-> ( Z .+ X ) .< ( Z .+ Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ogrpaddlt.0 | |- B = ( Base ` G ) |
|
| 2 | ogrpaddlt.1 | |- .< = ( lt ` G ) |
|
| 3 | ogrpaddlt.2 | |- .+ = ( +g ` G ) |
|
| 4 | ogrpaddltrd.1 | |- ( ph -> G e. V ) |
|
| 5 | ogrpaddltrd.2 | |- ( ph -> ( oppG ` G ) e. oGrp ) |
|
| 6 | ogrpaddltrd.3 | |- ( ph -> X e. B ) |
|
| 7 | ogrpaddltrd.4 | |- ( ph -> Y e. B ) |
|
| 8 | ogrpaddltrd.5 | |- ( ph -> Z e. B ) |
|
| 9 | 4 | adantr | |- ( ( ph /\ X .< Y ) -> G e. V ) |
| 10 | 5 | adantr | |- ( ( ph /\ X .< Y ) -> ( oppG ` G ) e. oGrp ) |
| 11 | 6 | adantr | |- ( ( ph /\ X .< Y ) -> X e. B ) |
| 12 | 7 | adantr | |- ( ( ph /\ X .< Y ) -> Y e. B ) |
| 13 | 8 | adantr | |- ( ( ph /\ X .< Y ) -> Z e. B ) |
| 14 | simpr | |- ( ( ph /\ X .< Y ) -> X .< Y ) |
|
| 15 | 1 2 3 9 10 11 12 13 14 | ogrpaddltrd | |- ( ( ph /\ X .< Y ) -> ( Z .+ X ) .< ( Z .+ Y ) ) |
| 16 | 4 | adantr | |- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> G e. V ) |
| 17 | 5 | adantr | |- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> ( oppG ` G ) e. oGrp ) |
| 18 | ogrpgrp | |- ( ( oppG ` G ) e. oGrp -> ( oppG ` G ) e. Grp ) |
|
| 19 | 5 18 | syl | |- ( ph -> ( oppG ` G ) e. Grp ) |
| 20 | 19 | adantr | |- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> ( oppG ` G ) e. Grp ) |
| 21 | 6 | adantr | |- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> X e. B ) |
| 22 | 8 | adantr | |- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> Z e. B ) |
| 23 | eqid | |- ( oppG ` G ) = ( oppG ` G ) |
|
| 24 | eqid | |- ( +g ` ( oppG ` G ) ) = ( +g ` ( oppG ` G ) ) |
|
| 25 | 3 23 24 | oppgplus | |- ( X ( +g ` ( oppG ` G ) ) Z ) = ( Z .+ X ) |
| 26 | 23 1 | oppgbas | |- B = ( Base ` ( oppG ` G ) ) |
| 27 | 26 24 | grpcl | |- ( ( ( oppG ` G ) e. Grp /\ X e. B /\ Z e. B ) -> ( X ( +g ` ( oppG ` G ) ) Z ) e. B ) |
| 28 | 25 27 | eqeltrrid | |- ( ( ( oppG ` G ) e. Grp /\ X e. B /\ Z e. B ) -> ( Z .+ X ) e. B ) |
| 29 | 20 21 22 28 | syl3anc | |- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> ( Z .+ X ) e. B ) |
| 30 | 7 | adantr | |- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> Y e. B ) |
| 31 | 3 23 24 | oppgplus | |- ( Y ( +g ` ( oppG ` G ) ) Z ) = ( Z .+ Y ) |
| 32 | 26 24 | grpcl | |- ( ( ( oppG ` G ) e. Grp /\ Y e. B /\ Z e. B ) -> ( Y ( +g ` ( oppG ` G ) ) Z ) e. B ) |
| 33 | 31 32 | eqeltrrid | |- ( ( ( oppG ` G ) e. Grp /\ Y e. B /\ Z e. B ) -> ( Z .+ Y ) e. B ) |
| 34 | 20 30 22 33 | syl3anc | |- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> ( Z .+ Y ) e. B ) |
| 35 | 23 | oppggrpb | |- ( G e. Grp <-> ( oppG ` G ) e. Grp ) |
| 36 | 20 35 | sylibr | |- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> G e. Grp ) |
| 37 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 38 | 1 37 | grpinvcl | |- ( ( G e. Grp /\ Z e. B ) -> ( ( invg ` G ) ` Z ) e. B ) |
| 39 | 36 22 38 | syl2anc | |- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> ( ( invg ` G ) ` Z ) e. B ) |
| 40 | simpr | |- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> ( Z .+ X ) .< ( Z .+ Y ) ) |
|
| 41 | 1 2 3 16 17 29 34 39 40 | ogrpaddltrd | |- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> ( ( ( invg ` G ) ` Z ) .+ ( Z .+ X ) ) .< ( ( ( invg ` G ) ` Z ) .+ ( Z .+ Y ) ) ) |
| 42 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 43 | 1 3 42 37 | grplinv | |- ( ( G e. Grp /\ Z e. B ) -> ( ( ( invg ` G ) ` Z ) .+ Z ) = ( 0g ` G ) ) |
| 44 | 36 22 43 | syl2anc | |- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> ( ( ( invg ` G ) ` Z ) .+ Z ) = ( 0g ` G ) ) |
| 45 | 44 | oveq1d | |- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> ( ( ( ( invg ` G ) ` Z ) .+ Z ) .+ X ) = ( ( 0g ` G ) .+ X ) ) |
| 46 | 1 3 | grpass | |- ( ( G e. Grp /\ ( ( ( invg ` G ) ` Z ) e. B /\ Z e. B /\ X e. B ) ) -> ( ( ( ( invg ` G ) ` Z ) .+ Z ) .+ X ) = ( ( ( invg ` G ) ` Z ) .+ ( Z .+ X ) ) ) |
| 47 | 36 39 22 21 46 | syl13anc | |- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> ( ( ( ( invg ` G ) ` Z ) .+ Z ) .+ X ) = ( ( ( invg ` G ) ` Z ) .+ ( Z .+ X ) ) ) |
| 48 | 1 3 42 | grplid | |- ( ( G e. Grp /\ X e. B ) -> ( ( 0g ` G ) .+ X ) = X ) |
| 49 | 36 21 48 | syl2anc | |- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> ( ( 0g ` G ) .+ X ) = X ) |
| 50 | 45 47 49 | 3eqtr3d | |- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> ( ( ( invg ` G ) ` Z ) .+ ( Z .+ X ) ) = X ) |
| 51 | 44 | oveq1d | |- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> ( ( ( ( invg ` G ) ` Z ) .+ Z ) .+ Y ) = ( ( 0g ` G ) .+ Y ) ) |
| 52 | 1 3 | grpass | |- ( ( G e. Grp /\ ( ( ( invg ` G ) ` Z ) e. B /\ Z e. B /\ Y e. B ) ) -> ( ( ( ( invg ` G ) ` Z ) .+ Z ) .+ Y ) = ( ( ( invg ` G ) ` Z ) .+ ( Z .+ Y ) ) ) |
| 53 | 36 39 22 30 52 | syl13anc | |- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> ( ( ( ( invg ` G ) ` Z ) .+ Z ) .+ Y ) = ( ( ( invg ` G ) ` Z ) .+ ( Z .+ Y ) ) ) |
| 54 | 1 3 42 | grplid | |- ( ( G e. Grp /\ Y e. B ) -> ( ( 0g ` G ) .+ Y ) = Y ) |
| 55 | 36 30 54 | syl2anc | |- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> ( ( 0g ` G ) .+ Y ) = Y ) |
| 56 | 51 53 55 | 3eqtr3d | |- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> ( ( ( invg ` G ) ` Z ) .+ ( Z .+ Y ) ) = Y ) |
| 57 | 41 50 56 | 3brtr3d | |- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> X .< Y ) |
| 58 | 15 57 | impbida | |- ( ph -> ( X .< Y <-> ( Z .+ X ) .< ( Z .+ Y ) ) ) |