This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a right ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 3-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ogrpaddlt.0 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| ogrpaddlt.1 | ⊢ < = ( lt ‘ 𝐺 ) | ||
| ogrpaddlt.2 | ⊢ + = ( +g ‘ 𝐺 ) | ||
| ogrpaddltrd.1 | ⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) | ||
| ogrpaddltrd.2 | ⊢ ( 𝜑 → ( oppg ‘ 𝐺 ) ∈ oGrp ) | ||
| ogrpaddltrd.3 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| ogrpaddltrd.4 | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| ogrpaddltrd.5 | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| ogrpaddltrd.6 | ⊢ ( 𝜑 → 𝑋 < 𝑌 ) | ||
| Assertion | ogrpaddltrd | ⊢ ( 𝜑 → ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ogrpaddlt.0 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | ogrpaddlt.1 | ⊢ < = ( lt ‘ 𝐺 ) | |
| 3 | ogrpaddlt.2 | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | ogrpaddltrd.1 | ⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) | |
| 5 | ogrpaddltrd.2 | ⊢ ( 𝜑 → ( oppg ‘ 𝐺 ) ∈ oGrp ) | |
| 6 | ogrpaddltrd.3 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 7 | ogrpaddltrd.4 | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 8 | ogrpaddltrd.5 | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 9 | ogrpaddltrd.6 | ⊢ ( 𝜑 → 𝑋 < 𝑌 ) | |
| 10 | eqid | ⊢ ( oppg ‘ 𝐺 ) = ( oppg ‘ 𝐺 ) | |
| 11 | 10 2 | oppglt | ⊢ ( 𝐺 ∈ 𝑉 → < = ( lt ‘ ( oppg ‘ 𝐺 ) ) ) |
| 12 | 4 11 | syl | ⊢ ( 𝜑 → < = ( lt ‘ ( oppg ‘ 𝐺 ) ) ) |
| 13 | 12 | breqd | ⊢ ( 𝜑 → ( 𝑋 < 𝑌 ↔ 𝑋 ( lt ‘ ( oppg ‘ 𝐺 ) ) 𝑌 ) ) |
| 14 | 9 13 | mpbid | ⊢ ( 𝜑 → 𝑋 ( lt ‘ ( oppg ‘ 𝐺 ) ) 𝑌 ) |
| 15 | 10 1 | oppgbas | ⊢ 𝐵 = ( Base ‘ ( oppg ‘ 𝐺 ) ) |
| 16 | eqid | ⊢ ( lt ‘ ( oppg ‘ 𝐺 ) ) = ( lt ‘ ( oppg ‘ 𝐺 ) ) | |
| 17 | eqid | ⊢ ( +g ‘ ( oppg ‘ 𝐺 ) ) = ( +g ‘ ( oppg ‘ 𝐺 ) ) | |
| 18 | 15 16 17 | ogrpaddlt | ⊢ ( ( ( oppg ‘ 𝐺 ) ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 ( lt ‘ ( oppg ‘ 𝐺 ) ) 𝑌 ) → ( 𝑋 ( +g ‘ ( oppg ‘ 𝐺 ) ) 𝑍 ) ( lt ‘ ( oppg ‘ 𝐺 ) ) ( 𝑌 ( +g ‘ ( oppg ‘ 𝐺 ) ) 𝑍 ) ) |
| 19 | 5 6 7 8 14 18 | syl131anc | ⊢ ( 𝜑 → ( 𝑋 ( +g ‘ ( oppg ‘ 𝐺 ) ) 𝑍 ) ( lt ‘ ( oppg ‘ 𝐺 ) ) ( 𝑌 ( +g ‘ ( oppg ‘ 𝐺 ) ) 𝑍 ) ) |
| 20 | 3 10 17 | oppgplus | ⊢ ( 𝑋 ( +g ‘ ( oppg ‘ 𝐺 ) ) 𝑍 ) = ( 𝑍 + 𝑋 ) |
| 21 | 3 10 17 | oppgplus | ⊢ ( 𝑌 ( +g ‘ ( oppg ‘ 𝐺 ) ) 𝑍 ) = ( 𝑍 + 𝑌 ) |
| 22 | 19 20 21 | 3brtr3g | ⊢ ( 𝜑 → ( 𝑍 + 𝑋 ) ( lt ‘ ( oppg ‘ 𝐺 ) ) ( 𝑍 + 𝑌 ) ) |
| 23 | 12 | breqd | ⊢ ( 𝜑 → ( ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ↔ ( 𝑍 + 𝑋 ) ( lt ‘ ( oppg ‘ 𝐺 ) ) ( 𝑍 + 𝑌 ) ) ) |
| 24 | 22 23 | mpbird | ⊢ ( 𝜑 → ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) |