This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the function operation map. The definition is designed so that if R is a binary operation, then oF R is the analogous operation on functions which corresponds to applying R pointwise to the values of the functions. (Contributed by Mario Carneiro, 20-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-of | ⊢ ∘f 𝑅 = ( 𝑓 ∈ V , 𝑔 ∈ V ↦ ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cR | ⊢ 𝑅 | |
| 1 | 0 | cof | ⊢ ∘f 𝑅 |
| 2 | vf | ⊢ 𝑓 | |
| 3 | cvv | ⊢ V | |
| 4 | vg | ⊢ 𝑔 | |
| 5 | vx | ⊢ 𝑥 | |
| 6 | 2 | cv | ⊢ 𝑓 |
| 7 | 6 | cdm | ⊢ dom 𝑓 |
| 8 | 4 | cv | ⊢ 𝑔 |
| 9 | 8 | cdm | ⊢ dom 𝑔 |
| 10 | 7 9 | cin | ⊢ ( dom 𝑓 ∩ dom 𝑔 ) |
| 11 | 5 | cv | ⊢ 𝑥 |
| 12 | 11 6 | cfv | ⊢ ( 𝑓 ‘ 𝑥 ) |
| 13 | 11 8 | cfv | ⊢ ( 𝑔 ‘ 𝑥 ) |
| 14 | 12 13 0 | co | ⊢ ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) |
| 15 | 5 10 14 | cmpt | ⊢ ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) |
| 16 | 2 4 3 3 15 | cmpo | ⊢ ( 𝑓 ∈ V , 𝑔 ∈ V ↦ ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 17 | 1 16 | wceq | ⊢ ∘f 𝑅 = ( 𝑓 ∈ V , 𝑔 ∈ V ↦ ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ) |