This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for oesuc . (Contributed by NM, 31-Dec-2004) (Revised by Mario Carneiro, 15-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oesuclem.1 | ⊢ Lim 𝑋 | |
| oesuclem.2 | ⊢ ( 𝐵 ∈ 𝑋 → ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ suc 𝐵 ) = ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) ‘ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ) ) | ||
| Assertion | oesuclem | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ↑o suc 𝐵 ) = ( ( 𝐴 ↑o 𝐵 ) ·o 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oesuclem.1 | ⊢ Lim 𝑋 | |
| 2 | oesuclem.2 | ⊢ ( 𝐵 ∈ 𝑋 → ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ suc 𝐵 ) = ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) ‘ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ) ) | |
| 3 | oveq1 | ⊢ ( 𝐴 = ∅ → ( 𝐴 ↑o suc 𝐵 ) = ( ∅ ↑o suc 𝐵 ) ) | |
| 4 | limord | ⊢ ( Lim 𝑋 → Ord 𝑋 ) | |
| 5 | 1 4 | ax-mp | ⊢ Ord 𝑋 |
| 6 | ordelord | ⊢ ( ( Ord 𝑋 ∧ 𝐵 ∈ 𝑋 ) → Ord 𝐵 ) | |
| 7 | 5 6 | mpan | ⊢ ( 𝐵 ∈ 𝑋 → Ord 𝐵 ) |
| 8 | 0elsuc | ⊢ ( Ord 𝐵 → ∅ ∈ suc 𝐵 ) | |
| 9 | 7 8 | syl | ⊢ ( 𝐵 ∈ 𝑋 → ∅ ∈ suc 𝐵 ) |
| 10 | limsuc | ⊢ ( Lim 𝑋 → ( 𝐵 ∈ 𝑋 ↔ suc 𝐵 ∈ 𝑋 ) ) | |
| 11 | 1 10 | ax-mp | ⊢ ( 𝐵 ∈ 𝑋 ↔ suc 𝐵 ∈ 𝑋 ) |
| 12 | ordelon | ⊢ ( ( Ord 𝑋 ∧ suc 𝐵 ∈ 𝑋 ) → suc 𝐵 ∈ On ) | |
| 13 | 5 12 | mpan | ⊢ ( suc 𝐵 ∈ 𝑋 → suc 𝐵 ∈ On ) |
| 14 | oe0m1 | ⊢ ( suc 𝐵 ∈ On → ( ∅ ∈ suc 𝐵 ↔ ( ∅ ↑o suc 𝐵 ) = ∅ ) ) | |
| 15 | 13 14 | syl | ⊢ ( suc 𝐵 ∈ 𝑋 → ( ∅ ∈ suc 𝐵 ↔ ( ∅ ↑o suc 𝐵 ) = ∅ ) ) |
| 16 | 11 15 | sylbi | ⊢ ( 𝐵 ∈ 𝑋 → ( ∅ ∈ suc 𝐵 ↔ ( ∅ ↑o suc 𝐵 ) = ∅ ) ) |
| 17 | 9 16 | mpbid | ⊢ ( 𝐵 ∈ 𝑋 → ( ∅ ↑o suc 𝐵 ) = ∅ ) |
| 18 | 3 17 | sylan9eqr | ⊢ ( ( 𝐵 ∈ 𝑋 ∧ 𝐴 = ∅ ) → ( 𝐴 ↑o suc 𝐵 ) = ∅ ) |
| 19 | oveq1 | ⊢ ( 𝐴 = ∅ → ( 𝐴 ↑o 𝐵 ) = ( ∅ ↑o 𝐵 ) ) | |
| 20 | id | ⊢ ( 𝐴 = ∅ → 𝐴 = ∅ ) | |
| 21 | 19 20 | oveq12d | ⊢ ( 𝐴 = ∅ → ( ( 𝐴 ↑o 𝐵 ) ·o 𝐴 ) = ( ( ∅ ↑o 𝐵 ) ·o ∅ ) ) |
| 22 | ordelon | ⊢ ( ( Ord 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐵 ∈ On ) | |
| 23 | 5 22 | mpan | ⊢ ( 𝐵 ∈ 𝑋 → 𝐵 ∈ On ) |
| 24 | oveq2 | ⊢ ( 𝐵 = ∅ → ( ∅ ↑o 𝐵 ) = ( ∅ ↑o ∅ ) ) | |
| 25 | oe0m0 | ⊢ ( ∅ ↑o ∅ ) = 1o | |
| 26 | 1on | ⊢ 1o ∈ On | |
| 27 | 25 26 | eqeltri | ⊢ ( ∅ ↑o ∅ ) ∈ On |
| 28 | 24 27 | eqeltrdi | ⊢ ( 𝐵 = ∅ → ( ∅ ↑o 𝐵 ) ∈ On ) |
| 29 | 28 | adantl | ⊢ ( ( 𝐵 ∈ 𝑋 ∧ 𝐵 = ∅ ) → ( ∅ ↑o 𝐵 ) ∈ On ) |
| 30 | oe0m1 | ⊢ ( 𝐵 ∈ On → ( ∅ ∈ 𝐵 ↔ ( ∅ ↑o 𝐵 ) = ∅ ) ) | |
| 31 | 23 30 | syl | ⊢ ( 𝐵 ∈ 𝑋 → ( ∅ ∈ 𝐵 ↔ ( ∅ ↑o 𝐵 ) = ∅ ) ) |
| 32 | 31 | biimpa | ⊢ ( ( 𝐵 ∈ 𝑋 ∧ ∅ ∈ 𝐵 ) → ( ∅ ↑o 𝐵 ) = ∅ ) |
| 33 | 0elon | ⊢ ∅ ∈ On | |
| 34 | 32 33 | eqeltrdi | ⊢ ( ( 𝐵 ∈ 𝑋 ∧ ∅ ∈ 𝐵 ) → ( ∅ ↑o 𝐵 ) ∈ On ) |
| 35 | 34 | adantll | ⊢ ( ( ( 𝐵 ∈ On ∧ 𝐵 ∈ 𝑋 ) ∧ ∅ ∈ 𝐵 ) → ( ∅ ↑o 𝐵 ) ∈ On ) |
| 36 | 29 35 | oe0lem | ⊢ ( ( 𝐵 ∈ On ∧ 𝐵 ∈ 𝑋 ) → ( ∅ ↑o 𝐵 ) ∈ On ) |
| 37 | 23 36 | mpancom | ⊢ ( 𝐵 ∈ 𝑋 → ( ∅ ↑o 𝐵 ) ∈ On ) |
| 38 | om0 | ⊢ ( ( ∅ ↑o 𝐵 ) ∈ On → ( ( ∅ ↑o 𝐵 ) ·o ∅ ) = ∅ ) | |
| 39 | 37 38 | syl | ⊢ ( 𝐵 ∈ 𝑋 → ( ( ∅ ↑o 𝐵 ) ·o ∅ ) = ∅ ) |
| 40 | 21 39 | sylan9eqr | ⊢ ( ( 𝐵 ∈ 𝑋 ∧ 𝐴 = ∅ ) → ( ( 𝐴 ↑o 𝐵 ) ·o 𝐴 ) = ∅ ) |
| 41 | 18 40 | eqtr4d | ⊢ ( ( 𝐵 ∈ 𝑋 ∧ 𝐴 = ∅ ) → ( 𝐴 ↑o suc 𝐵 ) = ( ( 𝐴 ↑o 𝐵 ) ·o 𝐴 ) ) |
| 42 | 2 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ 𝑋 ) ∧ ∅ ∈ 𝐴 ) → ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ suc 𝐵 ) = ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) ‘ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ) ) |
| 43 | 11 13 | sylbi | ⊢ ( 𝐵 ∈ 𝑋 → suc 𝐵 ∈ On ) |
| 44 | oevn0 | ⊢ ( ( ( 𝐴 ∈ On ∧ suc 𝐵 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o suc 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ suc 𝐵 ) ) | |
| 45 | 43 44 | sylanl2 | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ 𝑋 ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o suc 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ suc 𝐵 ) ) |
| 46 | ovex | ⊢ ( 𝐴 ↑o 𝐵 ) ∈ V | |
| 47 | oveq1 | ⊢ ( 𝑥 = ( 𝐴 ↑o 𝐵 ) → ( 𝑥 ·o 𝐴 ) = ( ( 𝐴 ↑o 𝐵 ) ·o 𝐴 ) ) | |
| 48 | eqid | ⊢ ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) = ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) | |
| 49 | ovex | ⊢ ( ( 𝐴 ↑o 𝐵 ) ·o 𝐴 ) ∈ V | |
| 50 | 47 48 49 | fvmpt | ⊢ ( ( 𝐴 ↑o 𝐵 ) ∈ V → ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) ‘ ( 𝐴 ↑o 𝐵 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o 𝐴 ) ) |
| 51 | 46 50 | ax-mp | ⊢ ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) ‘ ( 𝐴 ↑o 𝐵 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o 𝐴 ) |
| 52 | oevn0 | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ) | |
| 53 | 23 52 | sylanl2 | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ 𝑋 ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ) |
| 54 | 53 | fveq2d | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ 𝑋 ) ∧ ∅ ∈ 𝐴 ) → ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) ‘ ( 𝐴 ↑o 𝐵 ) ) = ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) ‘ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ) ) |
| 55 | 51 54 | eqtr3id | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ 𝑋 ) ∧ ∅ ∈ 𝐴 ) → ( ( 𝐴 ↑o 𝐵 ) ·o 𝐴 ) = ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) ‘ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ) ) |
| 56 | 42 45 55 | 3eqtr4d | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ 𝑋 ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o suc 𝐵 ) = ( ( 𝐴 ↑o 𝐵 ) ·o 𝐴 ) ) |
| 57 | 41 56 | oe0lem | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ↑o suc 𝐵 ) = ( ( 𝐴 ↑o 𝐵 ) ·o 𝐴 ) ) |