This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for oesuc . (Contributed by NM, 31-Dec-2004) (Revised by Mario Carneiro, 15-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oesuclem.1 | |- Lim X |
|
| oesuclem.2 | |- ( B e. X -> ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` suc B ) = ( ( x e. _V |-> ( x .o A ) ) ` ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) ) ) |
||
| Assertion | oesuclem | |- ( ( A e. On /\ B e. X ) -> ( A ^o suc B ) = ( ( A ^o B ) .o A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oesuclem.1 | |- Lim X |
|
| 2 | oesuclem.2 | |- ( B e. X -> ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` suc B ) = ( ( x e. _V |-> ( x .o A ) ) ` ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) ) ) |
|
| 3 | oveq1 | |- ( A = (/) -> ( A ^o suc B ) = ( (/) ^o suc B ) ) |
|
| 4 | limord | |- ( Lim X -> Ord X ) |
|
| 5 | 1 4 | ax-mp | |- Ord X |
| 6 | ordelord | |- ( ( Ord X /\ B e. X ) -> Ord B ) |
|
| 7 | 5 6 | mpan | |- ( B e. X -> Ord B ) |
| 8 | 0elsuc | |- ( Ord B -> (/) e. suc B ) |
|
| 9 | 7 8 | syl | |- ( B e. X -> (/) e. suc B ) |
| 10 | limsuc | |- ( Lim X -> ( B e. X <-> suc B e. X ) ) |
|
| 11 | 1 10 | ax-mp | |- ( B e. X <-> suc B e. X ) |
| 12 | ordelon | |- ( ( Ord X /\ suc B e. X ) -> suc B e. On ) |
|
| 13 | 5 12 | mpan | |- ( suc B e. X -> suc B e. On ) |
| 14 | oe0m1 | |- ( suc B e. On -> ( (/) e. suc B <-> ( (/) ^o suc B ) = (/) ) ) |
|
| 15 | 13 14 | syl | |- ( suc B e. X -> ( (/) e. suc B <-> ( (/) ^o suc B ) = (/) ) ) |
| 16 | 11 15 | sylbi | |- ( B e. X -> ( (/) e. suc B <-> ( (/) ^o suc B ) = (/) ) ) |
| 17 | 9 16 | mpbid | |- ( B e. X -> ( (/) ^o suc B ) = (/) ) |
| 18 | 3 17 | sylan9eqr | |- ( ( B e. X /\ A = (/) ) -> ( A ^o suc B ) = (/) ) |
| 19 | oveq1 | |- ( A = (/) -> ( A ^o B ) = ( (/) ^o B ) ) |
|
| 20 | id | |- ( A = (/) -> A = (/) ) |
|
| 21 | 19 20 | oveq12d | |- ( A = (/) -> ( ( A ^o B ) .o A ) = ( ( (/) ^o B ) .o (/) ) ) |
| 22 | ordelon | |- ( ( Ord X /\ B e. X ) -> B e. On ) |
|
| 23 | 5 22 | mpan | |- ( B e. X -> B e. On ) |
| 24 | oveq2 | |- ( B = (/) -> ( (/) ^o B ) = ( (/) ^o (/) ) ) |
|
| 25 | oe0m0 | |- ( (/) ^o (/) ) = 1o |
|
| 26 | 1on | |- 1o e. On |
|
| 27 | 25 26 | eqeltri | |- ( (/) ^o (/) ) e. On |
| 28 | 24 27 | eqeltrdi | |- ( B = (/) -> ( (/) ^o B ) e. On ) |
| 29 | 28 | adantl | |- ( ( B e. X /\ B = (/) ) -> ( (/) ^o B ) e. On ) |
| 30 | oe0m1 | |- ( B e. On -> ( (/) e. B <-> ( (/) ^o B ) = (/) ) ) |
|
| 31 | 23 30 | syl | |- ( B e. X -> ( (/) e. B <-> ( (/) ^o B ) = (/) ) ) |
| 32 | 31 | biimpa | |- ( ( B e. X /\ (/) e. B ) -> ( (/) ^o B ) = (/) ) |
| 33 | 0elon | |- (/) e. On |
|
| 34 | 32 33 | eqeltrdi | |- ( ( B e. X /\ (/) e. B ) -> ( (/) ^o B ) e. On ) |
| 35 | 34 | adantll | |- ( ( ( B e. On /\ B e. X ) /\ (/) e. B ) -> ( (/) ^o B ) e. On ) |
| 36 | 29 35 | oe0lem | |- ( ( B e. On /\ B e. X ) -> ( (/) ^o B ) e. On ) |
| 37 | 23 36 | mpancom | |- ( B e. X -> ( (/) ^o B ) e. On ) |
| 38 | om0 | |- ( ( (/) ^o B ) e. On -> ( ( (/) ^o B ) .o (/) ) = (/) ) |
|
| 39 | 37 38 | syl | |- ( B e. X -> ( ( (/) ^o B ) .o (/) ) = (/) ) |
| 40 | 21 39 | sylan9eqr | |- ( ( B e. X /\ A = (/) ) -> ( ( A ^o B ) .o A ) = (/) ) |
| 41 | 18 40 | eqtr4d | |- ( ( B e. X /\ A = (/) ) -> ( A ^o suc B ) = ( ( A ^o B ) .o A ) ) |
| 42 | 2 | ad2antlr | |- ( ( ( A e. On /\ B e. X ) /\ (/) e. A ) -> ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` suc B ) = ( ( x e. _V |-> ( x .o A ) ) ` ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) ) ) |
| 43 | 11 13 | sylbi | |- ( B e. X -> suc B e. On ) |
| 44 | oevn0 | |- ( ( ( A e. On /\ suc B e. On ) /\ (/) e. A ) -> ( A ^o suc B ) = ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` suc B ) ) |
|
| 45 | 43 44 | sylanl2 | |- ( ( ( A e. On /\ B e. X ) /\ (/) e. A ) -> ( A ^o suc B ) = ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` suc B ) ) |
| 46 | ovex | |- ( A ^o B ) e. _V |
|
| 47 | oveq1 | |- ( x = ( A ^o B ) -> ( x .o A ) = ( ( A ^o B ) .o A ) ) |
|
| 48 | eqid | |- ( x e. _V |-> ( x .o A ) ) = ( x e. _V |-> ( x .o A ) ) |
|
| 49 | ovex | |- ( ( A ^o B ) .o A ) e. _V |
|
| 50 | 47 48 49 | fvmpt | |- ( ( A ^o B ) e. _V -> ( ( x e. _V |-> ( x .o A ) ) ` ( A ^o B ) ) = ( ( A ^o B ) .o A ) ) |
| 51 | 46 50 | ax-mp | |- ( ( x e. _V |-> ( x .o A ) ) ` ( A ^o B ) ) = ( ( A ^o B ) .o A ) |
| 52 | oevn0 | |- ( ( ( A e. On /\ B e. On ) /\ (/) e. A ) -> ( A ^o B ) = ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) ) |
|
| 53 | 23 52 | sylanl2 | |- ( ( ( A e. On /\ B e. X ) /\ (/) e. A ) -> ( A ^o B ) = ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) ) |
| 54 | 53 | fveq2d | |- ( ( ( A e. On /\ B e. X ) /\ (/) e. A ) -> ( ( x e. _V |-> ( x .o A ) ) ` ( A ^o B ) ) = ( ( x e. _V |-> ( x .o A ) ) ` ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) ) ) |
| 55 | 51 54 | eqtr3id | |- ( ( ( A e. On /\ B e. X ) /\ (/) e. A ) -> ( ( A ^o B ) .o A ) = ( ( x e. _V |-> ( x .o A ) ) ` ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) ) ) |
| 56 | 42 45 55 | 3eqtr4d | |- ( ( ( A e. On /\ B e. X ) /\ (/) e. A ) -> ( A ^o suc B ) = ( ( A ^o B ) .o A ) ) |
| 57 | 41 56 | oe0lem | |- ( ( A e. On /\ B e. X ) -> ( A ^o suc B ) = ( ( A ^o B ) .o A ) ) |