This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Left cancellation law for ordinal exponentiation. (Contributed by NM, 6-Jan-2005) (Revised by Mario Carneiro, 24-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oecan | |- ( ( A e. ( On \ 2o ) /\ B e. On /\ C e. On ) -> ( ( A ^o B ) = ( A ^o C ) <-> B = C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oeordi | |- ( ( C e. On /\ A e. ( On \ 2o ) ) -> ( B e. C -> ( A ^o B ) e. ( A ^o C ) ) ) |
|
| 2 | 1 | ancoms | |- ( ( A e. ( On \ 2o ) /\ C e. On ) -> ( B e. C -> ( A ^o B ) e. ( A ^o C ) ) ) |
| 3 | 2 | 3adant2 | |- ( ( A e. ( On \ 2o ) /\ B e. On /\ C e. On ) -> ( B e. C -> ( A ^o B ) e. ( A ^o C ) ) ) |
| 4 | oeordi | |- ( ( B e. On /\ A e. ( On \ 2o ) ) -> ( C e. B -> ( A ^o C ) e. ( A ^o B ) ) ) |
|
| 5 | 4 | ancoms | |- ( ( A e. ( On \ 2o ) /\ B e. On ) -> ( C e. B -> ( A ^o C ) e. ( A ^o B ) ) ) |
| 6 | 5 | 3adant3 | |- ( ( A e. ( On \ 2o ) /\ B e. On /\ C e. On ) -> ( C e. B -> ( A ^o C ) e. ( A ^o B ) ) ) |
| 7 | 3 6 | orim12d | |- ( ( A e. ( On \ 2o ) /\ B e. On /\ C e. On ) -> ( ( B e. C \/ C e. B ) -> ( ( A ^o B ) e. ( A ^o C ) \/ ( A ^o C ) e. ( A ^o B ) ) ) ) |
| 8 | 7 | con3d | |- ( ( A e. ( On \ 2o ) /\ B e. On /\ C e. On ) -> ( -. ( ( A ^o B ) e. ( A ^o C ) \/ ( A ^o C ) e. ( A ^o B ) ) -> -. ( B e. C \/ C e. B ) ) ) |
| 9 | eldifi | |- ( A e. ( On \ 2o ) -> A e. On ) |
|
| 10 | 9 | 3ad2ant1 | |- ( ( A e. ( On \ 2o ) /\ B e. On /\ C e. On ) -> A e. On ) |
| 11 | simp2 | |- ( ( A e. ( On \ 2o ) /\ B e. On /\ C e. On ) -> B e. On ) |
|
| 12 | oecl | |- ( ( A e. On /\ B e. On ) -> ( A ^o B ) e. On ) |
|
| 13 | 10 11 12 | syl2anc | |- ( ( A e. ( On \ 2o ) /\ B e. On /\ C e. On ) -> ( A ^o B ) e. On ) |
| 14 | simp3 | |- ( ( A e. ( On \ 2o ) /\ B e. On /\ C e. On ) -> C e. On ) |
|
| 15 | oecl | |- ( ( A e. On /\ C e. On ) -> ( A ^o C ) e. On ) |
|
| 16 | 10 14 15 | syl2anc | |- ( ( A e. ( On \ 2o ) /\ B e. On /\ C e. On ) -> ( A ^o C ) e. On ) |
| 17 | eloni | |- ( ( A ^o B ) e. On -> Ord ( A ^o B ) ) |
|
| 18 | eloni | |- ( ( A ^o C ) e. On -> Ord ( A ^o C ) ) |
|
| 19 | ordtri3 | |- ( ( Ord ( A ^o B ) /\ Ord ( A ^o C ) ) -> ( ( A ^o B ) = ( A ^o C ) <-> -. ( ( A ^o B ) e. ( A ^o C ) \/ ( A ^o C ) e. ( A ^o B ) ) ) ) |
|
| 20 | 17 18 19 | syl2an | |- ( ( ( A ^o B ) e. On /\ ( A ^o C ) e. On ) -> ( ( A ^o B ) = ( A ^o C ) <-> -. ( ( A ^o B ) e. ( A ^o C ) \/ ( A ^o C ) e. ( A ^o B ) ) ) ) |
| 21 | 13 16 20 | syl2anc | |- ( ( A e. ( On \ 2o ) /\ B e. On /\ C e. On ) -> ( ( A ^o B ) = ( A ^o C ) <-> -. ( ( A ^o B ) e. ( A ^o C ) \/ ( A ^o C ) e. ( A ^o B ) ) ) ) |
| 22 | eloni | |- ( B e. On -> Ord B ) |
|
| 23 | eloni | |- ( C e. On -> Ord C ) |
|
| 24 | ordtri3 | |- ( ( Ord B /\ Ord C ) -> ( B = C <-> -. ( B e. C \/ C e. B ) ) ) |
|
| 25 | 22 23 24 | syl2an | |- ( ( B e. On /\ C e. On ) -> ( B = C <-> -. ( B e. C \/ C e. B ) ) ) |
| 26 | 25 | 3adant1 | |- ( ( A e. ( On \ 2o ) /\ B e. On /\ C e. On ) -> ( B = C <-> -. ( B e. C \/ C e. B ) ) ) |
| 27 | 8 21 26 | 3imtr4d | |- ( ( A e. ( On \ 2o ) /\ B e. On /\ C e. On ) -> ( ( A ^o B ) = ( A ^o C ) -> B = C ) ) |
| 28 | oveq2 | |- ( B = C -> ( A ^o B ) = ( A ^o C ) ) |
|
| 29 | 27 28 | impbid1 | |- ( ( A e. ( On \ 2o ) /\ B e. On /\ C e. On ) -> ( ( A ^o B ) = ( A ^o C ) <-> B = C ) ) |